На главную

Статья по теме: Приложенных напряжений

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В случае систем с другими внешними переменными (кроме температуры), например при учете давления или приложенных напряжений, подобным же образом следует анализировать трехмерные фазовые диаграммы, где линии заменены поверхностями свободных энергий индивидуальных фаз. Добавление растворителя к жидкой фазе приводит к уменьшению свободной энергии при всех температурах и соответствующему изменению условий стабильности каждой из кристаллических фаз.[12, С.148]

В процессах переработки при каландровании (шприцевании), прессовании или литье под давлением под действием приложенных напряжений, высокозластических и пластических деформаций полимеры подвержены течению.[13, С.195]

Закон Ньютона для вязкости описывает реологическое поведение важного класса жидкостей, называемых ньютоновскими, у которых вязкость не зависит от величины приложенных напряжений или от реакции материала — градиента скорости. Она зависит только от температуры и давления. Приближенная запись этого уравнения имеет вид:[4, С.134]

В ранней работе Лаауркин [17] * высказывал несогласие с попытками Хукуэя [15] и Хорсли с Нэнкэрроу [47] объяснить образование шейки эффектом понижения температуры плавления кристаллов из-за приложенных напряжений. Он подчеркивал, что основные закономерности образования шейки одинаковы как для аморфных, так и для кристаллических полимеров; в частности,[10, С.294]

Практически все растворы полимеров в хороших растворителях проявляют эффект разжижения (снижения вязкости) при увеличении скорости сдвига. Произвольно изогнутые полимерные цепи деформируются и под действием приложенных напряжений ориентируются, оказывая тем самым меньшее[9, С.106]

Вынужденная высокоэластичность (квазиэластичность) - свойство твердых полимерных материалов испытывать при приложении внешних напряжений большие обратимые деформации, имеющие тот же механизм, что и высоког эластические деформации (см.). После снятия приложенных напряжений происходит постепенное восстановление первоначальной формы, ускоряющееся при нагревании или набухании.[1, С.397]

Таким образом, нелинейная зависимость между напряжением и вязкоупругой деформацией сводится к учету зависимости масштабной функции аа от напряжений. Рассмотрим методику определения этой функции и построения обобщенных кривых ползучести, обобщающих в своих координатах время деформирования и величину приложенных напряжений.[3, С.63]

Для перехода из одной вращательной изомерной формы в другую необходимо преодолеть определенный энергетический барьер (рис. 1.7). Поэтому возможность изменения конформаций цепных молекул зависит от соотношения величины потенциального барьера и энергии теплового движения, а также возмущающего влияния приложенных напряжений. Следовательно, можно предполагать наличие связи между молекулярной гибкостью и механизмом деформации, что будет детально рассмотрено ниже.[10, С.16]

В соответствии с этой моделью деформационное упрочнение на начальной стадии деформации (вплоть до 5 %) может быть объяснено увеличением дислокационной плотности от 5 х 1014 до 1015 м~2. Увеличение внутренних напряжений влияет на процесс образования дислокаций, препятствуя их выгибанию, и, таким образом, увеличивая величину приложенных напряжений, необходимых для продолжения деформации. В то же время увеличение внутреннего гидростатического давления при растяжении активизирует зернограничную диффузию и, как следствие, способствует протеканию процессов возврата.[7, С.194]

Однако, несмотря на некоторое сходство с жидким состоянием, высокоэласгическое состояние имеет Свои специфические особенности. Поэтому его следует рассматривать как особое физическое состояние, свойственное только полимерным соедине-1 ниям и характеризующееся способностью тел к значительным обратимым изменениям формы под влиянием сравнительно небольших приложенных напряжений. Так, натуральный каучук способен обратимо растягиваться в 10—15 раз по сравнению со своей первоначальной длиной. Эти обратимые деформации получили . название высокоэластических, или, просто, эластических деформаций*, в отличие от обычных обратимых упругих деформаций, 'вторые наблюдаются у ряда материалов (металлы, минералы). 1тобы понять физическую сущность высокоэластической дефор-рассмотрим некоторые хорошо известные виды дефор-[8, С.153]

Однако, несмотря на некоторое сходство с жидким состоянием, высокоэластическое состояние имеет свои специфические особенности. Поэтому его следует рассматривать как особое физическое состояние, свойственное только полимерным соединениям и характеризующееся способностью тел к значительным обратимым изменениям формы под влиянием сравнительно пеболь--{ ших приложенных напряжений. Так, натуральный каучук спосо-![ бен обратимо растягиваться в 10—15 раз по сравнению со спосй первоначальной длиной. Эти обратимые деформации получили .название высокоэластических или, просто, эластических дефор-ций *, в отличие от обычных обратимых упругих деформаций, Еоторые наблюдаются у ряда материалов (металлы, минералы). тобы понять физическую сущность тшсокоэластической дефор-Ьции, рассмотрим некоторые хорошо известные виды дефор-Ьции.[6, С.153]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
4. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Северс Э.Т. Реология полимеров, 1966, 199 с.
10. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
11. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
12. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
13. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
14. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
15. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
16. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
17. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
18. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
19. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную