На главную

Статья по теме: Происходит набухание

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При погружении частиц катионита в воду происходит набухание их и растяжение пространственной сетки. Благодаря стремлению ионов Н+ выходить через поверхность в водную фазу, оставляя за собой 'отрицательно заряженные, фиксированные группы (например, SO3~), прочно соединенные ковалентными связями с неподвижной макромолекул яр ной сеткой, на поверхности гранул катионита появляется двойной электрический слой, причем отрицательные заряды будут в полимерной фазе, а положительные — в водной. Если размешивать тонко измельченный полимер с водой, то в полученной суспензии значение рН будет низким. Достаточно, однако, прекратить перемешивание и дать частицам полимера осесть, чтобы жидкость стала совершенно нейтральной. Иначе говоря, несмотря на стремление ионов Н+ переходить в водную фазу, они удерживаются на небольших расстояниях от поверхности полимера силами электростатического притяжения. Аналогичная связанность ионов ОН~ характерна для анионитов. Следовательно, у ионитов отсутствует свободная диффузия ионов Н+ и ОН~ в раствор, свойственная низкомолекулярным кислотам и основаниям.[8, С.585]

При этом большое значение имеют свойства жидкости, в которой происходит набухание, продолжительность и температура процесса. При разработке рецептур резиновых изделий, обладающих наименьшей степенью набухания в жидкостях, учитывают следующие положения.[4, С.200]

Растворение ксантогената осуществляется в две стадии. Сначала происходит набухание, затем идет собственно растворение. На первой стадии транспортировка растворителя происходит быстро за счет смачивания, т. е. по механизму конвективной диффузии. Через 1 мин (рис. 5.2) процесс завершается на 93% от своего равновесного значения, которое устанавливается через 20—40 мин [5]. Однако количество первоначально проникшей щелочи оказывается недостаточным для полного растворения ксантогената. В то же время поры в ксантогенате заполнены, и дальнейшая транспортировка щелочи в ксантогенат может осуществляться только по механизму медленно протекающей молекулярной диффузии.[7, С.108]

Поскольку реакция протекает в водной фазе и в присутствии триметилкарбинола, происходит набухание катализатора. Зависимость степени набухания катализатора от содержания ТМК в воде (рис. 61) является важным технологическим параметром, определяющим размер гидрататора. Константа равновесия реакции гидратации, определяемая по уравнению[1, С.222]

Перед ацетилирова.нием целлюлозу подвергают активаций уксусной кислотой; при этом происходит набухание целлюлозы, облегчающее диффузию ацетилирующей смеси внутрь волокна, что повышает скорость реакции и равномерность ацетилирования.[5, С.256]

ВОДОСТОЙКОСТЬ полимеров (water-resistance, Wasserbestandigkeit, resistance а Геаи) — способность полимеров сохранять свои свойства при длительном воздействии воды. Вода при контакте с полимером диффундирует через поверхность вглубь материала изделия; при этом происходит набухание полимеров (поропласты могут поглощать воду без набухания). Поглощение воды иногда приводит к искажению формы изделия, падению его прочностных показателей, диэлектрич. свойств и др. Структура и свойства полимерных материалов могут изменяться в результате экстракции водой водорастворимых ингредиентов (пластификаторов, стабилизаторов и др.).[11, С.247]

ВОДОСТОЙКОСТЬ полимеров (water-resistance, Wasserbestandigkeit, resistance a 1'eau) — способность полимеров сохранять свои свойства при длительном воздействии воды. Вода при контакте с полимером диффундирует через поверхность вглубь материала изделия; при этом происходит набухание полимеров (поропласты могут поглощать воду без набухания). Поглощение воды иногда приводит к искажению формы изделия, падению его прочностных показателей, диэлектрич. свойств и др. Структура и свойства полимерных материалов могут изменяться в результате экстракции водой водорастворимых ингредиентов (пластификаторов, стабилизаторов и др.).[10, С.250]

В процессе набухания ионообменная смола значительно изменяет свою структуру, т. е, ведет себя как типичный нежесткий сорбент, поэтому по отношению к набухшим ионообменным смолам термины «мнкропористость» или «внутримолекулярная пористость» совершенно неприменимы. При сорбции па ионообменных смолах происходит набухание полимера, т. е. смола представляет собой раствор низкомолекулярной жидкости в сшитом полимере, и ее поглотительную способность правильнее всего оценивать степенью набухания (глава XIII). Степень набухания дает возможность количественно оценить общий объем, занятый низкомолекулярной жидкостью в набухшем полимере. Этот объем1 ничего общего не имеет с суммарным объемом пор и превышает последний н сотни раз5, Набухание всегда приводит к уменьшению прочности полимера, а следовательно, к сокращению срока службы ионита.[2, С.512]

В процессе набухания ионообменная смола значительно изменяет свою структуру, т. е. ведет себя как типичный нежесткий сорбент, поэтому по отношению к набухшим ионообменным смолам термины «мпкропористость» или «внутримолекулярная пористость» совершенно неприменимы. При сорбции па ионообменных смолах происходит набухание полимера, т. е. смола представляет собой раствор низкомолекулярной жидкости в сшитом полимере, и ее поглотительную способность правильнее всего оценивать степенью набухания (глава XIII). Степень набухания дает возможность количественно оценить общий объем, занятый низкомолекулярной жидкостью в набухшем полимере. Этот объем" ничего общего не имеет с суммарным объемом пор и превышает последний к сотни раз5. Набухание всегда приводит к уменьшению прочности полимера, а следовательно, к сокращению срока службы ионита.[6, С.512]

ИНКЛЮДИРОВАНИЕ ЦЕЛЛЮЛОЗЫ (inclusion of cellulose, Zelluloseiuklusion, inclusion de cellulose) — метод получения целлюлозы повышенной реакционной способности, заключающийся в ее обработке водой и последующем вытеснении воды органич. растворителями. При обработке водой или водным р-ром NaOH (активация) происходит набухание целлюлозы п разрыв значительного числа межмолекулярных водородных связей, что облегчает диффузию реагентов внутрь целлюлозных волокон п, следовательно, обусловливает повышенную реакционную способность пнклюдировашшп целлюлозы. Однако присутствие воды делает невозможным проведение нек-рых химич. реакций. При удалении воды высушиванием волокна уплотняются и целлюлоза утрачивает повышенную активность. Поэтому воду вытесняют какой-либо водорастворимой жидкостью (ацетон, пиридин), к-рую при необходимости можно вытеснить неполярпой жидкостью (бензол, циклогек;ап, сероуглерод). В результате такой обработки, к-рая п является собственно ннклюднропанпем целлюлозы, межмолекулярные пространства в целлюлозе частично заполняются растворителем, непосредственное действн? которого не вызывает набухания целлюлозы. Инклюдпрующне агенты, молекулы к-рых имеют большой объем (пиридин, бензол), способны удерживаться волокном даже при продолжительном нагревании при 100° С в высоком вакууме. Количество агента, остающегося в волокне после сушки, не зависит от его полярнпстп, поэтому невозможность удаления агента объясняют стерпч. причинами. Присутствие молекул органнч. растворителя в высушенном волокне препятствует сближению макромолекул и образованию водородных связей. Полярные жидкости с небольшим объемом молекул (метанол, ацетон) удаляются при нагревании в вакууме и, следовательно, не могут быть применены для И. ц.[10, С.430]

ИНКЛЮДИРОВАНИЕ ЦЕЛЛЮЛОЗЫ (inclusion of cellulose, Zelluloseinklusion, inclusion de cellulose) — метод получения целлюлозы повышенной реакционной способности, заключающийся в ее обработке водой и последующем вытеснении воды органич. растворителями. При обработке водой или водным р-ром NaOH (активация) происходит набухание целлюлозы и разрыв значительного числа межмолекулярных водородных связей, что облегчает диффузию реагентов внутрь целлюлозных волокон и, следовательно, обусловливает повышенную реакционную способность инклюдированной целлюлозы. Однако присутствие воды делает невозможным проведение нек-рых химич. реакций. При удалении воды высушиванием волокна уплотняются и целлюлоза утрачивает повышенную активность. Поэтому воду вытесняют какой-либо водорастворимой жидкостью (ацетон, пиридин), к-рую при необходимости можно вытеснить неполярной жидкостью (бензол, циклогексап, сероуглерод). В результате такой обработки, к-рая и является собственно инклюдированием целлюлозы, межмолеку-лярныо пространства в целлюлозе частично заполняются растворителем, непосредственное действие которого не вызывает набухания целлюлозы. Инклюдирующие агенты, молекулы к-рых имеют большой объем (пиридин, бензол), способны удерживаться волокном даже при продолжительном нагревании при 100° С в высоком вакууме. Количество агента, остающегося в волокне после сушки, не зависит от его полярности, поэтому невозможность удаления агента объясняют стерич. причинами. Присутствие молекул органич. растворителя в высушенном волокне препятствует сближению макромолекул и образованию водородных связей. Полярные жидкости г небольшим объемом молекул (метанол, ацетон) удаляются при нагревании в вакууме п, следовательно, не могут быть применены для И. ц.[11, С.427]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Рагулин В.В. Технология шинного производства Изд.3 1981г, 1981, 263 с.
4. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
5. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Серков А.Т. Вискозные волокна, 1980, 295 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную