На главную

Статья по теме: Радиоактивных излучений

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Частичное сшивание макромолекул полиэтилена происходит и под действием радиоактивных излучений. При этом повышается его теплостойкость, но снижаются эластичность и ударная вязкость. Без доступа кислорода полиэтилен устойчив до 290 °С. При 300—400 °С полиэтилен разлагается с образованием жидких и газообразных продуктов, содержащих очень мало этилена, что ука-* зывает на сложный характер деструкции, далекий от простой деполимеризации.[5, С.82]

В процессе хранения и эксплуатации изделий из полимеров под действием света, тепла, радиоактивных излучений, кислорода, различных химических веществ может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимера: появляется хрупкость, жесткость, резко снижается способность к кристаллизации. В итоге наблюдается потеря работоспособности изделий из полимеров. Поэтому проблема защиты полимеров от вредных воздействий различных структурирующих и деструктирующих факторов имеет самое актуальное значение. Нежелательное изменение структуры полимеров увеличивается при приложении к ним неразрушающих механических[8, С.177]

В процессе хранения и эксплуатации изделий из полимеров под действием света, тепла, радиоактивных излучений, кислорода, различных химических веществ может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимера: появляется хрупкость, жесткость, резко снижается 'способность к кристаллизации. В итоге наблюдается потеря работоспособности изделий из полимеров. Поэтому проблема защиты полимеров от вредных воздействий различных структурирующих и деструктирующих факторов имеет самое актуальное значение. Нежелательное изменение структуры полимэров увеличивается при приложении к ним неразрушающих механических[11, С.177]

В процессе хранения и эксплуатации изделий из полимеров под действием света, теплоты, радиоактивных излучений, кислорода, различных химических веществ может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимера: появляется хрупкость, жесткость, резко снижается способность к кристаллизации. В итоге наблюдается потеря работоспособности изделий из полимеров. Поэтому проблема защиты полимеров от вредных воздействий различных структурирующих и деструктирующих факторов имеет самое актуальное значение. Нежелательное изменение структуры полимеров увеличивается при приложении к ним неразрушающих механических напряжений, приводящих к развитию деформаций. Особенно этот эффект заметен при приложении многократно повторяющихся механических напряжений. При этом протекает деструкция и сшивание цепей, образуются разветвленные структуры, обрывки беспорядочно сшитых макромолекул, что изменяет в целом исходную молекулярную структуру полимера. Все эти нежелательные изменения приводят к старению полимеров.[1, С.239]

Рассмотрение различных реакций полимеров приводит к выводу, что часть из них играет положительную роль и может быть использована на практике Так, как мы уже говорили, механическую деструкцию в присутствии кислорода воздуха или других акцепторов свободных радикалов используют для пластикации полимеров с целью облегчения их переработки, для получения привитых и блок-сололимсров; реакции сшивания макромолекул приводят к образованию пространственно-сшитых структур, отличающихся от линейных значительно более высокими механическими показателями и повышенной термостойкостью. Однако в большинстве случаев реакции деструкции приводят к нежелательному уменьшению молекулярной массы, сопровождающемуся резким снижением механических показателей, появлением текучести при низких температурах и пр В процессе хранения и эксплуатации изделий из полимеров лод действием света, тепла, радиоактивных излучений, кислорода может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимеров: появляются хрупкость, жесткость, резко снижается способность к кристаллизации. Это приводит к потере работоспособности изделий из полимеров Изменение свойств полиме-р в под ц'йствисм различных физических и химических факторов • процесс переработки, хранения и эксплуатации изделий п.3 полимеров на ыгястся старением[2, С.224]

Полиэтилен обладает высокой химической стойкостью и механической прочностью. Он стоек к действию радиоактивных излучений, морозостоек и хорошо обрабатывается на технологическом оборудовании. Эти свойств'а полиэтилена и явились основой для использования его в качестве ингредиента резиновых смесей.[7, С.56]

Ряд полимеров эксплуатируется в атомной промышленности, в космосе, где действуют интенсивные потоки различных радиоактивных излучений. Поведение изделий из полимеров в этих условиях определяет и сроки их эксплуатации.[1, С.245]

Ряд полимеров эксплуатируется в атомной промышленности, в космосе, где действуют интенсивные потоки различных радиоактивных излучений. Поэтому поведение изделий из полимеров в этих условиях определяет и сроки их эксплуатации.[8, С.190]

Ряд полимеров эксплуатируется в атомной промышленности, в космосе, где действуют интенсивные потоки различных радиоактивных излучений. Поэтому поведение изделий из полимеров в этих условиях определяет и сроки их эксплуатации.[11, С.190]

Устойчивость к разным воздействиям. Ее оценивают по изменению прочности, выносливости, устойчивости к истиранию и других свойств волокон при воздействии на образец света, повышенной или пониженной темп-ры, радиоактивных излучений и др. Для ускорения испытаний это изменение определяют только при одной, постоянной для сравниваемых образцов продолжительности воздействия. Однако более полной является кинетич. характеристика изменения исследуемого свойства в зависимости от длительности или числа циклов воздействий.[10, С.457]

Устойчивость к разный воздействиям. Ее оценивают по изменению прочности, выносливости, устойчивости к истиранию и других свойств волокон при воздействии на образец света, повышенной или пониженной темп-ры, радиоактивных излучений и др. Для ускорения испытаний это изменение определяют только при одной, постоянной для сравниваемых образцов продолжительности воздействия. Однако более полной является кинетич. характеристика изменения исследуемого свойства в зависимости от длительности или числа циклов воздействий.[12, С.454]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
3. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
6. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
7. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
8. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную