На главную

Статья по теме: Распределения сегментов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В работах [182 — 185] был рассмотрен вопрос о характере распределения сегментов вблизи поверхности и показано, что без учета исключенного объема плотность сегментов вблизи поверхности экспоненциально уменьшается с удалением от нее; при этом характеристическая ширина распределения пропорциональна средней длине петли Рв. С учетом исключенного объема сегментов распределение будет иным (типа ящика), и будет иметь место более резкий переход от области большей к области меньшей плотности. Для простоты предполагается, что распределение является ступенчатой функцией и что объемная доля Фв полимерных сегментов в этой фазе постоянна.[4, С.127]

Если в области достаточно низких температур можно исключить проскальзывание цепей, т. е. если dN/d(L/L0) не зависит от Т, то температура влияет исключительно на ширину A(L/L0) распределения сегментов цепи, которые с увеличением деформации нагружаются до своего критического состояния:[1, С.204]

Первое обстоятельство немало смущало технологов еще в относительно недалекие времена. В действительности дело сводится к уже знакомой нам проблеме разных способов усреднения, в результате которого получается интегральный параметр F, включающий в себя полную функцию распределения сегментов по ориентациям, но столь же неявным образом, как одна какая-нибудь q — средняя молекулярная масса. Поэтому сильные колебания F при разных методах измерения — не минус, а плюс: разные значения соответствуют разным типам усреднения, а это уже есть дополнительная информация о функции распределения ориентации.[2, С.367]

Закономерности влияния молекулярного веса на взаимную растворимость дают возможность высказать гипотезу о наличии сегментальной растворимости полимеров на границе раздела фаз в двухфазной смеси [24, 45, 96, 97, 100]. Действительно, при контакте двух полимеров на границе раздела начинается процесс взаимного растворения, приводящий к образованию переходного слоя, состоящего из смеси сегментов. Параметры этого слоя, т. е. его толщина *и характер распределения сегментов по толщине определяются не только растворимостью сегментов, определенной из данных по совместимости олигомеров. На процесс граничного взаиморастворения налагается ограничение в виде требования к сохранению наиболее вероятной формы макромолекулярных клубков. Действительно, перемещение молекулы олигомера с молекулярным весом порядка 104 в слой другого полимера может произойти, однако, перемещение такого же по размерам отрезка макромолекулы вызовет изменение конформации клубка, что приведет к изменению энтропии системы. Видимо, растворимость сегментов должна лишь качественно согласовываться с величиной взаимной растворимости соответствующих олигомеров, количественное согласование невозможно без учета изменения кон-формационного набора пограничных макромолекул в зоне контакта полимеров.[5, С.28]

Объемный модуль [62] может быть в принципе получен посредством подстановки мгновенного распределения сегментов в таких соударениях в соответствующие выражения полной работы взаимодействия полимерных молекул.[7, С.50]

Следствие конформационных переходов в аморфных областях полимеров при ориентировании — изменение распределения сегментов молекул в аморфных участках по длинам. Обнаружение в ориентированных полимерах после прорастания шейки заметного числа свернутых конформеров [56] позволяет считать, что в межкристаллитных аморфных прослойках по крайней мере часть молекул имеет длину, большую чем 1Л. В процессе ориентационной вытяжки разнодлинность молекул в аморфных прослойках уменьшается. Это подтверждается ИК-спектроскопиче-скими данными по изучению распределения напряжений в нагруженных образцах разной степени вытяжки [133]. Найдено, что в ориентированных образцах ПКА, ПП и др. с разной К число держащих нагрузку молекулярных цепей в аморфных об-[9, С.226]

Аксиалиты 254 Аморфные полимеры 166 ел. Анизотропия распределения сегментов 62 Асимметричная полимеризация 111 ел. Атактическая структура 90, 156[11, С.295]

Как следствие гребнеобразного строения наблюдается еще одна характерная особенность конформации молекулы привитого со-по-лимера — высокая плотность распределения сегментов в области объема, смежной с ее основной цепью. Это приводит к осуществлению редкой молекулярной структуры цепной молекулы, имеющей большую равновесную жесткость и в то же время образующей статистический клубок, практически не протекаемый растворителем. Последнее свойство при моделировании молекулы червеобразной цепью диаметром d выражается в большой величине ее диаметра.[8, С.101]

Для полученных величии /t2 и Л2 в перечисленных моделях характерна пропорциональность этих величин контурной длине цепи L (уравнения 1.10 и 1.13). Надо отметить, что функции распределения сегментов таких цепей являются гауссовыми (при N —э- оо; см. § 4), поэтому такие цепи называют гауссовыми цепями.[10, С.27]

Теория Флори—Хаггинса распространена Килбом и Вьюком [1880] на растворы привитых сополимеров. Установлено, что свойства растворов зависят главным образом от теплоты взаимодействия сегментов полимера с растворителем и совершенно не зависят от распределения сегментов привитых цепей в исходном полимере. Модель решетки дает хорошее качественное (но не количественное) описание свойств растворов. Проверка, осуществленная по некоторым литературным данным (блок-полимеры полистирола и полиметилметакрилата, полиакрилонитрила и полистирола) показала, что теория может быть применима к блок-полимерам, если их рассматривать как разновидность привитого полимера, у которого ветви привиты к концам основной цепи.[15, С.295]

Кроме того, экспериментально нужно определить коэффициенты преломления для обыкновенного и необыкновенного лучей, входящие в уравнение Друде, что представляет наибольшие трудности. Обыч- , но предварительно рассчитывают коэффициенты отражения для дан-**»-' ных концентраций растворов и толщин слоев и полученные значе-^Г ния сопоставляются с экспериментальными. При расчетах так же, *• как и в методе эллипсометрии, предполагается, что адсорбционная Ф пленка является гомогенной и дискретной. Однако метод НПО мож-"^ но использовать и для расчета распределения сегментов в адсорбционном слое. Этот вопрос обсуждался [63], хотя экспериментальные исследования и теоретические расчеты не были проведены.[4, С.18]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Физика полимеров, 1990, 433 с.
3. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
4. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
5. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
6. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
7. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
8. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
9. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
10. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
11. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
12. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную