На главную

Статья по теме: Различных конформаций

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Среди различных конформаций цепных молекул наиболее вероятны сильно свернутые, у которых расстояние между концами макромолекулы (или узлами цепей пространственной сетки) намного меньше ее полной контурной длины. Под действием внешней силы цепи будут изменять свою форму, но после прекращения действия силы цепные молекулы в результате теплового движения снова вернутся в наиболее вероятное состояние, соответствующее сильно свернутым конформациям. На языке термодинамики, переход в более вероятное состояние связан с возрастанием энтропии. Поэтому возвращение деформированного образца резины в начальное недеформированное состояние сопровождается увеличением энтропии. Напротив, деформация резины связана с[13, С.73]

Свойства полимеров зависят от свойств отдельных макромолекул или цепей полимерных сеток, в частности, от набора различных конформаций полимерных цепей, реализуемых в тех или иных условиях. От типа реализуемых конформаций зависит и надмолекулярная структура полимера, также сильно влияющая на свойства полимеров. В связи с этим конформационная статистика — теоретическая основа физики полимеров.[2, С.132]

Форма макромолекул в растворе. Под влиянием колебательно вращательных движений макромолекулы полимера принимают в растворах самые разнообразные формы. Разнообразие форм макромолекул, определяющееся гибкостью цепи полимера, зависит от его структуры, длины цепи, характера и количества заместителей в элементарных звеньях. Длинная цепь полимера более гибка, чем короткая одинакового строения. Предельными формами макромолекул в растворе являются вытянутая нить или нить, спутанная в рыхлый клубок. Из многочисленных возможных конформаций линейные макромолекулы стремятся занять такое положение, которое в наибольшей степени отвечает равновесному состоянию данной системы, т. е. состоянию, соответствующему минимуму потенциальной энергии. Изменению формы цепных молекул препятствуют внутримолекулярные силы взаимодействия между соседними атомами и группами атомов в самой макромолекуле. Поэтому макромолекулы с большим внутримолекулярным взаимодействием не отличаются разнообразием конформационного состава в растворе. Многообразие конформаций макромолекул в растворе определяется также величиной сил межмолекулярного взаимодействия. При разбавлении растворов силы межмолекулярного взаимодействия убывают, что приводит к повышению подвижности отдельных сегментов макромолекул. На форму макромолекул в растворе оказывают существенное влияние также характер растворителя и температура раствора. При отсутствии взаимодействия с растворителем и повышении температуры гибкость цепей увеличивается, поэтому возрастает вероятность различных конформаций макромолекул.[1, С.66]

Ближний конформационный порядок пронвля етсн в образовании различных конформаций при присоединенш звеньев друг к другу. Для виниловых и винилиденовых полиме[6, С.40]

Гибкость - это способность цепных макромолекул принимать множество различных конформаций в результате внутреннего вращения .вокруг множества простых связей. Гибкость характерна для полимеров, но может частично наблюдаться и у олигомеров. Конфигурацию макромолекулы, молекулярную массу и гибкость объединяют общим понятием молекулярных характеристик.[7, С.121]

Понятие энтропии как статистической характеристики лучше всего продемонстрировать на примере различных конформаций макромолекул. Возьмем один из крайних случаев - полностью распрямленную цепь (рис.37,а). Естественно, что такая цепь может иметь только одну конформацию, а расстояние[5, С.114]

Свойства полимеров зависят от свойств отдельных макромолекул или цепей полимерных сеток, в частности зависят от набора различных конформаций полимерных цепей, реализуемых в тех или[3, С.92]

Большая длина макромолекулы при возможности вращения частей молекулы вокруг простых связей обусловливает еще один вид изомерии — поворотную изомерию, которая выражается в возникновении различных конформаций. Конформацией макромолекулы называют пространственное расположение атомов или групп атомов в молекуле, которое может меняться под действием теплового движения без разрушения химических связей. Конфор-мационные перестройки происходят и в малых молекулах, где разнообразие поворотных изомеров намного меньше, чем в макромолекулах.[4, С.92]

Полимерные цепи состоят из звеньев, которые благодаря наличию между ними простых углерод-углеродных или других химических связей способны к внутримолекулярному вращению, что приводит к набору различных конформаций. Важнейшим физическим свойством длинных цепных макромолекул является их гибкость, благодаря которой проявляется высокая эластичность полимеров.[3, С.34]

Н-связи [498], характеризующиеся симметричной потенциальной кривой и одинаковой принадлежностью протона обоим электроотрицательным атомам («колеблющийся протон») [499]. Это позволяет моделировать водородные связи в виде А—Н—А или А—Н—В, ще А и В — электроотрицательные атомы одной молекулы или разных молекул (в данном случае атомы N и О), и существенно упрощает применение метода молекулярной механики для расчетов различных конформаций и энергий их напряжения в изолированных и водородносвязанных молекулах и комплексах.[10, С.327]

Ключевым термодинамическим параметром, определяющим свойства полимерных растворов, является параметр /, характеризующий изменение энергии Гиббса растворителя при введении в него некоторого участка макромолекулы — обычно мономерной единицы или сегмента. Особенности термодинамического поведения растворов полимеров обусловлены тем, что макромолекулу можно расположить в растворителе большим числом способов, так как она может принять огромное число различных конформаций. По мере повышения концентрации уже вошедшие в раствор цепи создают осложнения для введения новых цепей (возникают пресловутые ловушки, когда определенный объем заэкранирован звеньями или сегментами уже помещенных в нее молекул).[8, С.112]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Бартенев Г.М. Физика полимеров, 1990, 433 с.
9. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
10. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
11. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
12. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
13. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
14. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
15. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
16. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
17. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
18. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
19. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
20. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную