На главную

Статья по теме: Разрушению структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В сетчатых полимерах макромолекулы связаны поперечными химическими связями. Всякая попытка разделить такие полимеры на отдельные частицы приводит к разрушению структуры полимера. Поэтому пространственные полимеры не могут быть переведены в раствор или расплавлены при нагревании. Понятие «молекула» для таких полимеров становится условным. Макромолекулами в этом случае обычно называют основные линейные цепи главных валентностей, не включая « это понятие «поперечные связи», соединяющие цепи. Условность такого определения и несоответствие его с общепринятым понятием «молекула» совершенно очевидны. По-видимому, для полимеров пространственного строения должны быть введены некоторые новые понятия и термины, однако это возможно лишь на основе тщательных исследований химического строения и структуры пространственных полимеров.[5, С.30]

В механизме Эйринга не предполагается изменений структуры системы при переходе от покоя к движению, поэтому структурные параметры А и U0 в процессе течения считаются постоянными, но Р или dy/dt могут не только снижать U, но и приводить к разрушению структуры системы и снижать начальную энергию активации U0 и динамическую вязкость т) тем в большей степени, чем больше скорость течения.[3, С.149]

Если полимер обладает структурой с чередующимися полярными и неполярными участками с резко различающимися по энергии межмолекулярными связями, то неполярн'ая жидкость, выключая взаимодействие по участкам, связанным относительно слабым дисперсионным взаимодействием, в меньшей мере способствует разрушению структуры при измельчении, но ориентирует его именно по линии этого ослабления. Однако в этом случае, поскольку структура скреплена оставшимися более мощными, чем выключенные, дипольными и водородными связями, эффект ослабляющего действия и его направленность выражены весьма слабо. Наоборот, если жидкость способна в таком полимере ослаблять или «выключать взаимодействие по полярным участкам, в том числе и водородным связям, то измельчение существенно облегчается и имеет ярко выраженную ориентацию по линии ослабленных связей. Например, в природных целлюлозных или белковых волокнах межмолекулярное взаимодействие и взаимодействие между элементами структур (высшего порядка (фибриллы) в поперечном направлении осуществляются преимущественно водородными связями[8, С.319]

При возрастании напряжения сдвига начинают происходить все в большей степени процессы ориентации и деформации макромолекул и разрушения структуры. При этом вязкость уменьшается (рис. 10.3) и в некоторой точке достигает постоянного минимального значения — предельной вязкости Ir\[4, С.153]

В отличие от теорий механики сплошных сред в теориях разрушения при «молекулярных» кинетических процесах учитывается дискретность частиц и элементов, составляющих материальное тело. В теории кинетических процессов предполагается непосредственно связать разрыв связей, смещение элементов и переход от отдельных актов воздействия на молекулярные цепи к макроскопической деформации, росту дефекта и разрушению структуры материала.[1, С.75]

Однако именно здесь сказывается бездумность вынесения энтропийной составляющей энергии активации в предэкспоненци-альный множитель. В действительности a priori ниоткуда не следует, что энтропия при элементарном акте течения должна возрастать. В случае продольного течения, сопровождающегося ориентацией и, следовательно, уменьшением конфигурационной энтропии системы в целом (см. гл. VI), этот антитезис вообще не нуждается в доказательстве. Однако и сдвиговое напряжение, обычно приводящее к разрушению структуры, в некоторых случаях может порождать ее. Это явление, именуемое антитиксотропией [29, с. 87 — 138], чаще всего наблюдается в растворах полярных полимеров и полиэлектролитов, где возможно образование «дополнительной» флуктуационной сетки водородных связей. Но в принципе подобное ограничение даже не обязательно.[2, С.170]

Многие полимерные системы в текучем состоянии представляют собой упруго-вязкие тела, в которых существуют надмолекулярные структуры, обусловливающие проявление высокой эластичности. При деформировании всегда происходит их разрушение, сколь бы ни были малы напряжения и скорости сдвига. Экспериментально это разрушение отмечается только при достаточно высоких напряжениях и скоростях сдвига, когда значительное число прочных структурных элементов (ассоциатов макромолекул — пачек и т. п.) не успевает самопроизвольно распадаться под действием теплового движении и происходит их принудительное разрушение под действием сдвига. Такому резко выраженному разрушению структуры предшествует более или менее значительное развитие высокоэластической деформации. Ему отвечает достижение критических (предельные) значений высокоэластической деформации, касательных и нормальных напряжений. Переход через предельные значения касательных напряжений принято называть переходом через предел прочности. В отличие от твердых тел у полимерных систем о текучем состоянии переход через предел прочности может не сопровождаться нарушением сплошности тела вследствие наличия у них большого числа легко разрушающихся н легко восстанавливающихся связей между структурными элементами.[6, С.243]

Многие полимерные системы в текучем состоянии представляют собой упруго-вязкие тела, в которых существуют надмолекулярные структуры, обусловливающие проявление высокой эластичности. При деформировании всегда происходит их разрушение, сколь бы ни были малы напряжения и скорости сдвига. Экспериментально это разрушение отмечается только при достаточно высоких напряжениях и скоростях сдвига, когда значительное число прочных структурных элементов (ассоциатов макромолекул — пачек и т. п.) не успевает самопроизвольно распадаться под действием теплового движения и происходит их принудительное разрушение под действием сдвига- Такому резко выраженному разрушению структуры предшествует более или менее значительное развитие высокоэластической деформации. Ему отвечает достижение критических (предельных) значений высокоэластической деформации, касательных и нормальных напряжений. Переход через предельные значения касательных напряжений принято называть переходом через предел прочности. В отличие от твердых тел у полимерных систем в текучем состоянии переход через предел прочности может не сопровождаться нарушением сплошности тела вследствие наличия у них большого числа легко разрушающихся и легко восстанавливающихся связей между структурными элементами.[7, С.243]

Учитывая предыдущие результаты, эту общую диаграмму, очевидно, следует трактовать следующим образом: первый участок соответствует частичному сжатию элементов каркаса и определяется степенью их устойчивости; второй, пологий, участок отражает изгибную деформацию элементов после потери ими устойчивости; третий — последующий переход к уплотнению и сжатию изогнутых, «сплющенных», ячеек и узлов. Отсюда понятно, что если конкретная макроструктура в силу геометрического строения ячеек или малой жесткости полимера допускает возникновение изгибных деформаций при очень малых условиях, то первый участок практически исчезает, а диаграмма принимает вид, показанный на рис. 2а, т. е. имеет только два последних участка. В случае же жестких пенопластов или эластичных материалов большой плотности диаграмма сжатия будет представлять только первый участок, так как в первом случае (жесткие материалы) возникновение изгибных деформаций приведет к разрушению структуры и достижению предела прочности, а во втором — к полному исчезновению второго участка и непрерывному переходу к третьему. Характерное преобразование вида диаграммы при увеличении плотности пенопласта можно проследить на примере ПХВ-БЭ (рис. 5).[10, С.327]

при малых деформациях является резковыраженный максимум механических потерь [18—19]я 'а также изменение электропроводности саженаполненных резин [20]. Разрушению структуры наполнителя способствуют: тепловая обработка резиновых смесей [17, 18, 21], введение в смесь некоторых химических соединений, в особенности М,4-динитрозо-М-ме-тиланилина [22—24], а также дробление наполнителя, в частности сажи, вызывающее разрушение его агрегатов [16]. С другой стороны длительный отдых наполненных резин после 'их нагружения способствует практически полному восстановлению структуры наполнителя [25, 26]. Недавно было показано [27], что предварительное растяжение саженаполненных вулканизатов в области малых деформаций вызывает заметное увеличение модуля упругости. Изменение структуры наполнителя практически не оказывает влияния на упругие характеристики наполненных эластомеров в области средних и больших деформаций. В этом случае упругие свойства наполненных эластомеров определяются в основном гидродинамическим эффектом и наличием связей различной природы между наполнителем 'и каучуковой фазой.[9, С.134]

выражающими зависимость эффективной вязкости г\ от напряжения сдвига Р с помощью параметров т]о — наибольшей вязкости практически неразрушенной структуры, r]m — наименьшей вязкости, соответствующей предельному разрушению структуры в потоке, и РО — предельного напряжения сдвига, характеризующего пластическую прочность струк-[10, С.18]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
5. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
9. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
10. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.

На главную