На главную

Статья по теме: Релаксационных состояний

Предметная область: полимеры, синтетические волокна, каучук, резина

Изменения релаксационных состояний у целлюлозы играют важную роль в производстве бумаги. В бумажной массе после размола в воде аморфные участки целлюлозных микрофибрилл находятся в высокоэластическом состоянии. Эластичность способствует фибриллированию волокон, т.е. разделению их на продольные элементы при меньшем укорочении, и последующему формованию бумаги. Микрофибриллы более равномерно распределяются в бумажном листе, а в процессе стеклования при последующей сушке образуются более прочные межволоконные связи. Переходы релаксационных состояний имеют значение и для химических превращений целлюлозы при получении ее производных — в процессах предварительной активации (см. 16.3).[2, С.245]

Вернемся теперь к графическому изображению релаксационных состояний и релаксационных переходов, происходящих в пределах одного — жидкого — фазового состояния (рис. II. 2). Для этого воспользуемся рис. I. 14, но дорисуем на плоскости q (т)—Т «температурный спектр», эквивалентный (т). Напомним, что при подобном изображении релаксационного спектра система в зависимости от силы и энергии, связанных с воздействием, показываемым стрелкой действия, слева от стрелки действия даст неупругий, а справа — упругий отклик. Если спектр рис. II. 2 относится к одной какой-то полимерной системе (впрочем, приводимые соображения частично применимы даже при анализе сдвигового воздействия на кристаллы — см. [19]), то стрелке / будет соответствовать твердоподобное (вплоть до хрупкого) поведение, которое связано со стеклообразными свойствами, стрелке 2 — высокоэластическое, а стрелке 3 — вязкое поведение (т. е. необратимое течение). Опыты такого рода с неорганическими и органическими стеклами хорошо известны еще со времен работы Лазуркина и Александрова [39, с. 181].[1, С.78]

Вязкотекучее состояние — одно из структурно-жидких релаксационных состояний полимеров, при котором воздействие на систему механических сил приводит преимущественно к развитию необратимых (пластических) деформаций. Впрочем, это определение, приведенное в [24, т. 1, с. 577], не учитывает рассмотренных выше факторов, связанных со стрелкой действия и релаксационным спектром (см. рис. II.2); определение относится к обычным, условиям воздействия с малой скоростью, когда отклик системы на воздействие в целом неупругий.[1, С.162]

Именно при этом в полной мере выясняется физический смысл релаксационных состояний и релаксационных переходов,, связанных с температурами стеклования и текучести. Хотя это может показаться с непривычки парадоксальным утверждением, но физический смысл состоит как раз в своего рода иллюзорности этих состояний и переходов, что и отличает их от фазовых состояний и термодинамических переходов (мы сознательно избегаем дополнения «фазовые» к словам «термодинамические переходы», см. ссылку на стр. 90).[1, С.282]

Получаемая таким образом информация сходна с получаемой при механических воздействиях в том смысле, что позволяет достаточно четко регистрировать по меньшей мере два из ,трех релаксационных состояний в аморфных полимерах и судить о влиянии кристалличности на релаксационные переходы в кристалли-. зующихся полимерах. (Некоторые дополнительные сведения по этому поводу см. в работах Борисовой [21, с. 34; 24, т. 2, с. 740— 754].) В то же время следует учитывать, что «электрический отклик» полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику! Поэтому-то хоти метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения, температура соответствующего максимума потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты «механического» стеклования.[1, С.264]

Теперь от определения стеклообразного состояния следует перейти к рассмотрению процессов, в результате которых оно достигается. Семантическая неэквивалентность понятий «возникновение» и «проявление» стеклообразного состояния отражает изображенную на рис. II. 2 и связанную с принципом ТВЭ реальную физическую разницу зондирования релаксационных состояний при перемещении по температурной шкале и упругих или неупругих откликов системы при перемещении стрелки действия по частотной или временной шкале.[1, С.81]

И последняя проблема, о которой здесь уместно упомянуть— это проблема «вторичной» полимеризации уже заполимеризован-ной цепи, или «материализация» линейной модели Изинга второго порядка. Наиболее изученный вариант такой «материализации» — Это переход клубок — спираль в полипептидах, приводящий, разумеется, на всех уровнях к резкому изменению и релаксационных свойств. Однако, так же, как мы говорили о немеханических аналогах релаксационных состояний, можно говорить и о немеханиче-'ских аналогах такой «вторичной материализации».[1, С.284]

Если линейный полимер находится в кристаллическом состоянии, то ниже температуры плавления — кристаллизации Тк он находится в твердом состоянии, но обладает различной жесткостью ниже и выше температуры стеклования Тс (кривая типа 2). Это связано с тем, что аморфная часть полимера в силу принципа автономности элементов суперсетки (см. § 3) также может находиться в разных релаксационных состояниях. Однако наличие кристаллической фазы смещает границы релаксационных состояний и вообще существенно изменяет структуру аморфных участков по сравнению со «свободной» аморфной фазой. В тех случаях, когда полимер слабо закристаллизован, то выше Тс он деформируется практически как некристаллический полимер. Типичный пример— обычные марки поливинилхлорида.[1, С.70]

Взаимосвязь релаксационных состояний и деформаций позволяет применять для определения температур перехода термомеханический метод.[2, С.157]

В каждом из релаксационных состояний — стеклообразном, высокоэластическом и вязкотекучем — могут происходить элементарные процессы, заключающиеся в перемещении определенных элементов структуры или их перестройке (включая распад на меньшие элементы). Каждому такому процессу можно в первом приближении приписать определенное время жизни т,-, при-[3, С.174]

Границы существования релаксационных состояний полимеров можно устанавливать с помощью термомеханического метода, который позволяет оценивать деформируемость полимера в широком интервале температур при заданном режиме нагружения и нагревания. При помощи этого метода, пользуясь термомеханической кривой (ТМ-кривой) -графиком зависимости относительной деформации от температуры - определяют температуры перехода. Более подробно термомеханический метод, схема прибора (весов Каргина), методики анализа и обработки ТМ-кривых описаны в учебном пособии [30].[2, С.157]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь

Решение задач по химии любой сложности. Для студентов-заочников готовые решения задач из методичек Шимановича И.Л. 1983, 1987, 1998, 2001, 2003, 2004 годов.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Виноградов Г.В. Реология полимеров, 1977, 440 с.
5. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
6. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную