На главную

Статья по теме: Релаксационных состояниях

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В книге излагаются современная теория прочности полимеров и механизмы их разрушения в различных структурных и релаксационных состояниях с позиций термодинамической и кинетической теорий и микромеханики разрушения. Рассмотрено влияние различных факторов (температура, поверхностно-активные среды, проникающее излучение и молекулярная ориентация) на процессы разрушения. Отражены вопросы прогнозирования прочностных свойств полимерных материалов.[1, С.631]

Напротив, в элементорганических полимерах даже при том же строении главных цепей обрамляющие группы настолько ослабляют межмолекулярные взаимодействия, что по кинетическим (физическим) характеристикам эти полимеры мало чем отличаются от своих органических аналогов. В частности, они могут существовать в трех релаксационных состояниях: стеклообразном (твердоподобном), высокоэластическом (каучукоподобном) и вяз-котекучем (обычном жидком).[2, С.21]

В соответствии с изложенными позициями в книге очень кратко освещены общие сведения о структурной организации полимеров и о подвижности элементов структуры. Обсуждаются основные вопросы физической кинетики, термодинамики и статистической физики полимеров. Рассматриваются процессы ориентации и вязкого течения полимеров разного строения, находящихся в различных релаксационных состояниях. С учетом современных представлений о молекулярном строении и структурной организации аморфных полимеров обсуждаются особенности проявлений их электрических и магнитных свойств.[2, С.8]

Если линейный полимер находится в кристаллическом состоянии, то ниже температуры плавления — кристаллизации Тк он находится в твердом состоянии, но обладает различной жесткостью ниже и выше температуры стеклования Тс (кривая типа 2). Это связано с тем, что аморфная часть полимера в силу принципа автономности элементов суперсетки (см. § 3) также может находиться в разных релаксационных состояниях. Однако наличие кристаллической фазы смещает границы релаксационных состояний и вообще существенно изменяет структуру аморфных участков по сравнению со «свободной» аморфной фазой. В тех случаях, когда полимер слабо закристаллизован, то выше Тс он деформируется практически как некристаллический полимер. Типичный пример— обычные марки поливинилхлорида.[2, С.70]

У полимеров, в зависимости от химического строения, определяющего энергию внутри- и межмолекулярного взаимодействия, молекулярной массы и молекулярной неоднородности, переход из стеклообразного состояния в вязкотекучее разделен большим или меньшим интервалом высокоэластического релаксационного состояния. У аморфных линейных полимеров этот интервал широкий. Аморфные разветвленные полимеры в зависимости от температуры также могут существовать во всех трех релаксационных состояниях. Аморфные полимеры сетчатого строения (сшитые) не могут находиться в вязкотекучем состоянии, а иногда и высокоэластическом. Способность сетчатых полимеров к размягчению зависит от частоты сетки. Так, густосетчатые полимеры существуют только в стеклообразном состоянии, тогда как у редкосетчатых полимеров возможно и высокоэластическое состояние.[4, С.149]

Полимеры могут либо кристаллизоваться, либо оставаться при всех температурах аморфными. В последнем случае они могут находиться в различных физических (релаксационных) состояниях: стеклообразном, высокоэластическом или вязкотекучем. С каждым из физических состояний связан определенный комплекс свойств, и каждому состоянию отвечает своя область технического и технологического применения. Физические состояния и границы их существования изучают многими структурными методами, но чаще всего их определяют по изменению механических свойств полимеров, которые очень чувствительны к структурным изменениям и релаксационным переходам. Так, для этой цели широко используют измерения деформируемости или податливости полимеров в широком интервале температур.[3, С.102]

Аморфные полимеры в зависимости от характера теплового движения могут находиться в трех релаксационных состояниях:[4, С.148]

Излагаются современная теория прочности полимеров и механизмы их разрушения в различных структурных и релаксационных состояниях с позиций термодинамической и кинетической теорий и микромеханики разрушения. Рассмотрено влияние различных факторов на процессы разрушения по данным различных структурных методов: рентгеновского, масс-спектрометрического, ИК-спектрометрии, пиролиза, релаксационной спектрометрии и др. Анализируется связь между механизмами разрушения и релаксационными явлениями, приводятся новые данные о дискретных спектрах прочности и долговечности полимеров.[6, С.2]

Если линейный полимер находится в кристаллическом состоянии, то ниже температуры плавления — температуры кристаллизации Тк он находится в твердом состоянии, но может различаться жесткостью ниже и выше температуры стеклования Тс (кривая б). Это связано с тем, что аморфная часть полимера также может находиться в разных физических (релаксационных) состояниях. В тех случаях, когда полимер слабо закристаллизован, то выше Гс он[3, С.103]

ции при комнатных темп-pax; благодаря соответствующим электрич. свойствам их применяют гл. обр. в полупроводниковой технике. В аморфной модификации полиселен и полителлур способны существовать во всех трех релаксационных состояниях. Все три полимера элементов VI группы могут содержать в цепи нек-рые гетероатомы, напр. элементы V группы. Введение в расплавы атомов галогенов приводит, как ужо указывалось, к обрыву цепи и снижению степени полимеризации. Судя по реологическим и морфологическим (величина рентгеновского большого периода) оценкам, степень полимеризации полиселена может достигать нескольких тысяч. Полителлур менее изучен.[7, С.184]

ции при комнатных темп-pax; благодаря соответствующим электрич. свойствам их применяют гл. обр. в полупроводниковой технике. В аморфной модификации полиселен и полителлур способны существовать во всех трех релаксационных состояниях. Все три полимера элементов VI группы могут содержать в цепи нек-рые гетцроатомы, напр, элементы V группы. Введение в расплавы атомов галогенов приводит, как уже указывалось, к обрыву цепи и снижению степени полимеризации. Судя по реологическим и морфологическим (величина рентгеновского большого периода) оценкам, степень полимеризации полиселена может достигать нескольких тысяч. Полителлур менее изучен.[8, С.182]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
4. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
5. Бартенев Г.М. Физика полимеров, 1990, 433 с.
6. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
7. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
8. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную