На главную

Статья по теме: Результате отщепления

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Обрыв цепи происходит в результате отщепления растущей полимерной макромолекулы от каталитического комплекса, передачи цепи на мономер или при реакции с молекулой триалкилалюминия, не связанного с хлоридом титана. Катализатор вновь начинает реакции роста новых цепей и таким образом действует многократно. В реальных промышленных условиях происходит постепенное отравление катализатора вследствие побочных реакций, и его необходимо периодически заменять.[2, С.52]

Подбором растворителей и условий процесса (температура, давление, концентрация мономера, свойства и концентрация инициатора) можно значительно повысить скорость реакции передачи цепи и получить весьма низкомолекулярные полимеры, в макромолекулах которых концевые звенья будут образованы продуктами распада молекул растворителя. Такой метод синтеза новых соединений, приобретающий все большее практическое значение, назван теломеризацией*. Реакцию проводят в присутствии соединений (телогенов), характеризующихся высокой скоростью передачи цепи Так, для системы стирол—СС14 константа скорости передачи цепи достигает 9-10~3 (моль-1, л, сек~1). Телогены подбирают таким образом, чтобы в их присутствии константа скорости передачи цепи имела наибольшие значения. Кроме того, радикалы, образующиеся в результате отщепления от телогена подвижного атома, должны служить активными инициаторами роста новых цепей. Чтобы увеличить скорость реакции передачи цепи, теломеризацию проводят при высо ких температурах, так как энергия активации реакции передачи цепи больше, чем для реакции роста примерно на 5—7 ккал/моль. Поэтому при повышении температуры реакции скорость передачи цепи резко возрастает.[1, С.127]

Конечные звенья макромолекул могут образоваться в результате отщепления атома водорода от макрорадикала или присоединения к нему продуктов распада молекул растворителя.[1, С.186]

Следует отметить, что эта схема является очень упрощенной. Так, полимер может содержать не только метиленовые, но и эфирные связи, которые образуются в результате отщепления молекулы воды от мети-* лольных групп двух молекул метилолмочевины:[3, С.395]

Аналогичным образом получают многие термостойкие полимеры, например полиимиды, полибензимидазолы, пирроны. Первую стадию синтеза проводят в растворе или расплаве, а затем на второй стадии полученные пленки или другие изделия нагревают. При этом в результате отщепления воды происходит образование гетероциклов.[5, С.50]

Гидролиз полисахаридов под действием воды осуществить практически невозможно из-за очень малой скорости реакции. Исключением можно считать автогидролиз легкогидролизуемых полисахаридов при нагревании с водой до 140... 180°С. В этих условиях катализирующее действие оказывает уксусная кислота, образующаяся в результате отщепления ацетильных групп от гемицеллюлоз. Подобную водную и паровую обработку древесины используют при так называемом предгидролизе, который осуществляют для частичного гидролиза гемицеллюлоз перед сульфатной варкой целлюлозы для химической переработки и, главным образом, для удаления арабиногалактана при варке целлюлозы из древесины лиственницы.[5, С.287]

При хлорировании стереорегулярных цис-1,4- и транс- 1,4-поли-бутадиенов получают продукты присоединения по двойной связи с 2,3-дихлорбутановыми звеньями [68 — 70]. Типичным признаком такой структуры является, в частности, поглощение в области 650 см~' ИК-спектров полимеров [70]. При хлорировании полибу-тадиенов протекают также процессы сшивания и деструкции полимерных цепей. В продукте хлорирования ^ис-1,4-полибутадиена, содержащем около 70% хлора, обнаружено некоторое количество двойных связей транс-конфигурации [68] . По мнению авторов, последние образуются в полимере в результате отщепления НС1 от хлорированного полибутадиена. Последующее присоединение хлора к этим связям приводит к увеличению содержания хлора в продукте. Если реакция проводится в присутствии метанола, то образуется полимер с метоксигруппами (полоса 1095 см~' ИК-спектров). В таких полимерах даже при относительно низком содержании хлора двойные связи отсутствуют, а их элементный состав, по данным ЯМР, соответствует общей формуле С4НбС1п(ОМе)2_и, где п для образцов, содержащих 43,2 и 37,8% хлора, равняется соответственно 1,64 и 1,33.[6, С.40]

При вулканизации ХСКЭП возможно также образование поперечных связей эфирного типа в результате отщепления атомов хлора от исходных молекулярных цепей при реакции с оксидом цинка [56].[6, С.196]

Моделирование реакций ограничения роста цепи при изучении кинетики гибели трифенилметильного катиона в результате отщепления галогенидиона от комплексного противоиона MeX^+i (Me - А1, В, Sn, Sb и др.; X-F, Cl, Br) [238] указывает на линейную связь наблюдаемой константы скорости с донорными числами лиганда Х~ (средним донорным числом в случае анионов с разными галогенными лигандами), что хорошо интерпретируется с позиции ЖМКО.[8, С.98]

Это же пространственное расположение является причиной замедления скорости взаимодействия TBSI с 2-меркапто-бензотиазолом (МВТ), образующимся в смеси в результате отщепления а-метиленового водорода изопренового (бутадиенового) звена макромолекулы ненасыщенного каучука бензтиазоль-ным радикалом. Сам бензтиазольный радикал появляется в результате термического гетеролитического распада молекулы суль-фенимида (сульфенамида) по связи -S-N<.[7, С.174]

Наиболее широкое применение получила реакция Визнера - красное окрашивание с солянокислым раствором флороглюцина. Эту реакцию дают концевые звенья кониферилового альдегида в лигнине (схема 12.2). Происходит конденсация альдегида с фенолом, катализируемая кислотой. Сначала осуществляется протониро-вание карбонильной группы с образованием гидроксилсодержащего карбкатиона, который как электрофил взаимодействует с флороглюцином и образует, по-видимому, через промежуточный а-комплекс первичный гидроксилсодержащий продукт. Этот продукт в результате протонирования в кислой среде отщепляет воду и дает окрашенный конечный продукт конденсации - карбкатион, находящийся в равновесии с резонансно-стабилизированной хиноидной формой, образующейся в результате отщепления протона от гидроксила флороглюцина.[5, С.373]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
5. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
6. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
7. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
8. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
9. Пашин Ю.А. Фторопласты, 1978, 233 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
13. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
14. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
15. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
16. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
17. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
18. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
19. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
20. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
21. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
23. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
24. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную