На главную

Статья по теме: Способность материала

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Способность материала локализовать высокий темл-рный градиент в неглубоком поверхностном слое характеризуют показателем теплоизоляционного качества (толщина слоя материала, необходимая для сохранения заданной темп-ры на тыльной стороне теплозащитного покрытия в конце периода нагревания). Толщину теплозащитного покрытия, необходимую для обеспечения тепловой защиты несущей конструкции, можно определить как fij-f^i где 6j= -?§•-----толщина[19, С.8]

Способность материала локализовать высокий темп-рный градиент в неглубоком поверхностном слое характеризуют показателем теплоизоляционного качества (толщина слоя материала, необходимая для сохранения заданной темп-ры на тыльной стороне теплозащитного покрытия в конце периода нагревания). Толщину теплозащитного покрытия, необходимую для обеспечения тепловой защиты несущей конструкции, можно определить как fij+fij, где 6!= —?•-----толщина[21, С.5]

Электропроводность к - величина, обратная электрическому сопротивлению, - характеризует способность материала проводить электрический ток. Для ненаполненных полимеров, в том числе эластомеров, значения к = dl /dE3 (где / - сила тока, Еэ - напряженность приложенного электрического поля) весьма малы и близки к значениям к для диэлектриков [30]. Наряду со способностью к поляризации в электрическом поле это свидетельствует о принадлежности полимеров к классу диэлектриков, т.е. об отсутствии у них свободных электронов. В последние годы для создания полимерных изделий, обладающих высокой проводимостью и выполняющих роль полупроводников, нашли широкое применение материалы, способные длительно сохранять заряд на поверхности после электризации, так называемые электреты.[5, С.551]

Упругая деформация - способность материала полностью восстанавливать исходную форму после снятия нагрузки; во многих случаях описывается законом Гука.[1, С.407]

Под твердостью понимают способность материала сопротивляться вдавливанию в него других тел. Твердость характеризует механические свойства поверхности. В связи с этим ее значение связано с физико-механическими характеристиками материала и, следовательно, с его физико-химическими особенностями, составом и условиями внешнего энергетического воздействия (температура, величина и скорость приложения усилия, наличие других внешних факторов). По значению твердости определяют возможные пути эффективного использования пластмассы.[14, С.117]

Пластичностью называется свойство материала сохранять форму, приобретенную под действием внешних сил. Иными словами, пластичность — это способность материала к необратимым деформациям. Эластичностью называется свойство материала легко деформироваться и возвращаться к перво-[2, С.89]

Допустимая температура нагрева ПВХ в зависимости от требований технологии сушки определяется такими характеристиками, как теплостойкость, т.е. способность материала противостоять нагреву до температуры, при которой он переходит в иное фазовое состояние (для ПВХ - это размягчение), термостойкость - способность материала противостоять нагреву до температуры, при которой происходит необратимое изменение его качества (ухудшение его физической или химической структуры, для ПВХ - деструкция), термостабильность -способность материала длительно выдерживать нагревание при определенной температуре без изменения свойств продукта (для ПВХ - без разложения).[9, С.90]

Пластичность — отсутствие заметных деформаций в материале при напряжениях меньше некоторого критического значения и развитие течения при больших напряжениях, т. е. способность материала к развитию необратимых деформаций при напряжениях, превышающих предел текучести. Пластичность для одного и того же каучука зависит от технологического режима пластикации и применяемого оборудования; для резиновой смеси — от типа, пластичности и количества каучука, вида и содержания наполнителя, мягчителя, а также от технологического режима изготовления, применяемого оборудования, времени «отдыха» и температуры.[7, С.69]

Наиболее достоверное заключение, которое вытекает из описанных экспериментов, сводится, по-видимому, к существенному влиянию технологических факторов, благоприятствующих ориентации, на прочность волокна. Особенное значение имеет способность материала ориентироваться в процессе деформации до разрыва, как мы это наблюдаем на примере изотропного ксантогенатного волокна (см. кривую 4 на рис. 11.57). Было проведено исследование [382] девяти модельных образцов нитей из вискозы различных типов. Зная степень растяжения по отношению к длине сухого волокна, можно найти конечную длину в относительных единицах (yt = 1 + е^, et — относительное растяжение) и относительную длину при разрыве vp — 1 + ер (где sp — относительное удлинение при разрыве).[13, С.126]

Выше уже упоминалось, что модуль упругости изменяется при изменении скорости деформации испытываемого образца и что это вытекает из временной зависимости деформации от напряжения. Если напряжение изменяется периодически с относительно малой амплитудой и если известно, как деформация отстает от напряжения, то можно вычислить динамический модуль упругости G и коэффициент механических потерь tg б, который характеризует способность материала поглощать колебания. Динамический модуль упругости возрастает с повышением частоты синусоидального напряжения, а коэффициент потерь обычно проходит через несколько областей, в которых материал обнаруживает максимальное поглощение колебаний. Эти характеристические частоты соответствуют частотам отдельных атомных групп в цепи. Определение зависимости динамического модуля упругости и коэффициента механических потерь от температуры в диапазоне от очень низкой до близкой к температуре плавления полимера дает представление о температурном интервале, в котором наблюдается увеличение подвижности характеристических групп макромолекул, сопровождаемое заметными изменениями свойств полимера. Этот метод,[4, С.107]

Прочность хрупкого материала характеризуется одним предельным состоянием, соответствующим переходу от упругой деформации к разрушению. Прочность пластического материала характеризуется двумя предельными состояниями, соответствующими переходу от упругой деформации к пластической (иногда при этом материал или деталь из него еще не теряет несущей способности) и переходу от пластической деформации к разрыву. Поэтому прочность, в широком смысле слова, определяют как способность материала сопротивляться как разрушению, так и пластической деформации.[11, С.9]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Белозеров Н.В. Технология резины, 1967, 660 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Амброж И.N. Полипропилен, 1967, 317 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
7. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
8. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
9. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
12. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
13. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
14. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
15. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
16. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
17. Виноградов Г.В. Реология полимеров, 1977, 440 с.
18. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
21. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
22. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную