На главную

Статья по теме: Структура материала

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На кривой нагрузка — удлинение кристаллических полимеров выделяют три характерные области (рис. 11.10). В области / деформация пропорциональна удлинению и происходит в основном за счет деформации аморфной части полимера. Структура материала при этом не меняется. При переходе от области / к области // в точке перегиба в образце возникает утоненный участок (один или несколько), длина которого быстро увеличивается. Этот участок называют шейкой. На стадии роста шейки происходит ориентация кристаллических структур в направлении вытяжки, исчезновение (плавление) тех кристаллических областей, которые оказались расположенными перпендикулярно направлению растяжения, и рост новых, ориентированных по направлению растяжения. В области // полимеру свойственны высокие прочность и удлинение. То напряжение, при котором под влиянием механических нагрузок происходит процесс плавления существовавших в полимере кристаллических областей и образование новых, ориентированных в направлении растяжения, называют напряжением рекристаллизации. Рекристаллизация приводит к тому, что в области III деформируется уже новый прочный материал — шейка, деформация которого заканчивается разрывом образца (точка А).[4, С.31]

Первый, наиболее правильный способ заключается в том, что после снятия нагрузки деформированному образцу дают возможность полностью огрел а кс R ров а ть в условиях, обеспечивающих наибольшую скорость релаксации, например при повышенных тем-ггерзтурах. При этом яроисшедшне в образце обратимые изменения снимаются и, следовательно, остаточная деформация является результатом только процесса течения. Нагтртшер, при деформации растяжения образца полиизобутилепа при 15° С в течение 46 суток общее относительное удлинение составляет 1000%. После релак-.сации деформированного образца остаточное относительное уд-ля-/ясние равно 500%. Это значит, что образед лолиизобутилена лри /ромна-гной температуре только в результате процесса течения де-/ 'фор.мируется в пять раз, Таким образом, лилейные полимеры в вьтсокоэласткческом состоянии способны к большим необратимым деформациям. Доказательством разделения деформации течения Я высокоэластической деформации может служить приведение структуры материала к исходной (цепи должны принять исходные Конформации)^ ECJHI структура материала в исходном состоянии[2, С.176]

Рис. 19.1. Структура материала на основе кокса, пропитанного фенольным связующим (темные участки — фенольная смола, светлые — кокс).[1, С.263]

Можно представить себе такую частоту действия силы (например, ультразвуковая частота), при которой даже в области комнатных температур в каучуке или резине не будут \спевать происходить молекулярные перегруппировки В этих условиях материал, эластичный при медленных воздействиях, обнаруживает свойства, соответствующие твердому, стеклообразному состоянию Такое явление, происходящее при температурах, превышающих температуру стеклования на десятки градусов, получило название механического стеклования При механическом стекловании структура материала остается равновесной.[2, С.189]

Первый, наиболее правильный способ заключается в то\[, что после снятия нагрузки деформированному образцу дают возможность полностью отрелакснровать в условиях, обеспечивающих наибольшую скорость релаксации, например при повышенных температурах. При этом происшедшие в образке обратимые изменения снимаются и, следовательно, остаточная деформация является результатом только процесса течения. Например, при деформации растяжеЕтия образца полиизобутилена при 15°С в течение 46 суток общее относительное удлинение составляет 1000%. После релаксации деформированного образца остаточное относительное удлинение равно 500%. Это значит, что образец полиизобутилена при /Комнатной температуре только в результате процесса течения де-/ 'формируется в пять раз. Таким образом, линейные полимеры в вьтсокоэластическом состоянии способны к большим необратимым • деформациям. Доказательством разделения деформации течения и высокоэластической деформации может служить приведение структуры материала к исходной {цепи должны принять исходные кон формации). ЕСЛИ структура материала в исходном состоянии[5, С.176]

Рис. 19.2. Структура материала на основе графита, пропитанного фенольным связующим.[1, С.263]

При больших деформациях, когда закон упругости нелинеен, но структура материала не изменяется, наблюдается геометрическая или деформационная вязкоупругость:[3, С.207]

Рассмотренное выше соотношение соблюдается достаточно строго только в тех случаях, когда структура материала остается неизменной на протяжении всего эксперимента. Этому соотноше-[9, С.141]

Но во многих случаях условия получения образцов и конструкционных материалов больших и малых габаритов таковы, что структура материала в большой массе получается иной, чем в малой. Структуры могут отличаться, в частности, различной степенью молекулярной ориентации (например, образец с неориентированной структурой и вытянутое из него волокно с ориентированной структурой). Хотя поперечные сечения исходного и ориентированного образцов различны, но наблюдаемое различие в прочностях вызвано не масштабным эффектом, так как сопоставляются образцы с различной структурой.[8, С.168]

Материал до нагружения (или при малых степенях нагружения) существенно отличается как по структуре, так и по релаксационным свойствам от материала, подвергающегося механическому разрушению. Структура материала и его свойства в месте роста области разрыва иные, чем в других частях образца.[9, С.137]

При рассмотрении разрушения полимеров в общем виде необходимо учитывать противодействие разрушению как межмолекулярных, так и химических связей. Если разрушение полимерного материала осуществляется в условиях, когда структура материала в ходе разрушения остается постоянной, то процесс подчиняется общим закономерностям прочности. Если же при разрушении полимерного материала реализуется его способность к высокоэластической деформации, сопровождающейся увеличением анизотропии материала, то условие, при котором разрыв подчиняется общим закономерностям, не соблюдается.[9, С.219]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
5. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
6. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
7. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
8. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
11. Виноградов Г.В. Реология полимеров, 1977, 440 с.
12. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
13. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
14. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
15. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
16. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
18. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную