На главную

Статья по теме: Структурной неоднородности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Хотя вследствие структурной неоднородности различных блоков их индивидуальные свойства проявляются и после введения их в БСУ, очевидно, все-таки происходит некоторое ограниченное совмещение блоков, что, как отмечалось выше, сказывается на температурах переходов. Другими словами, по-видимому, можно гово: рить о возникновении переходных областей, содержащих блоки различных типов. Однако доля таких областей в системе должна резко уменьшаться по мере протекания процесса ассоциации (кристаллизации) блоков различного характера. Об этом может свидетельствовать тот факт, что 7ПЛ кристаллической фазы блоков ОУ практически не отличается от таковой для исходного ОУ, а также высокая способность к ассоциации блоков ОУ и после введения их в БСУ.[9, С.85]

Одним из способов уменьшения структурной неоднородности волокна является кондиционирование, т. е. выдерживание нити при относительной влажности воздуха 85—95% и комнатной температуре в течение 3—5 сут. В результате кондиционирования происходит гидратация нити, вследствие чего связи между молекулами целлюлозы ослабевают и выравнивается напряженность нити, что способствует получению нити с более однородной структурой.[7, С.165]

Данные испытаний на раздир при более сложном виде концентрации напряжения - проколе - являются чувствительными к рецеп-турно-технологическим факторам резины и структурной неоднородности материала. Коэффициент изменчивости при разрыве выше, чем при проколе, а максимальное растягивающее (разрушающее) напряжение при проколе в несколько раз выше, чем при разрыве. • Динамические свойства эластомерных материалов (и корда) оценивают, измеряя число механических колебаний образцов до их полного разрушения при разных частотах (от низкочастотных до ультразвуковых) и различных типах нагрузок. Используют образцы-лопатки при растяжении, образцы с поперечной канавкой при продольном изгибе, образцы-гантели при знакопеременном изгибе с вращением, образцы-цилиндры при многократном сжатии. Динамические показатели измеряются в соответствии со следующими международными стандартами:[5, С.539]

Важное значение при этом имеет физическое состояние, в котором находится полимер, а также его температура. При низких температурах коэффициент пропускания стеклообразных (некристаллических) полимеров больше, чем кристаллических, из-за наличия у последних мутности, свидетельствующей о структурной неоднородности (гетерогенности). При повышенных температурах (в высокоэластическом и вязкотекучем состояниях) коэффициент пропускания полимеров всегда значительно меньше, чем при низких температурах.[1, С.233]

Определение характеристик неоднородности. Под характеристиками неоднородности понимают статический дисбаланс (неоднородность распределения масс), радиальное и боковое биение (геометрическая неоднородность), колебании радиального и бокового усилий, конусный и угловой эффекты (силовая неоднородность). Существует также понятие структурной неоднородности, т. Р. неоднородность внутренней структуры шины за счет несимметричного расположении брекерного пояса или его отдельных слоев, бортоиых колец, наличия в шине инородных включений, расслоений, воздушных пузырей и др. Неоднородности структуры выявляются методами интросконического контроля (рентген, ультразвук, голографическая интерферометрия и т. п.).[2, С.131]

Процессы релаксации в полимерах, характеризующие переход системы из неравновесного в равновесное состояние, определяются молекулярной подвижностью (движением различных по размерам, кинетических единиц). Полимеры могут рассматриваться как сложные системы, состоящие из ряда слабо взаимодействующих подсистем. Каждая подсистема состоит из однотипных кинетических единиц (релаксаторов). Из-за наличия характерной для полимеров структурной неоднородности эти релаксаторы находятся в разных условиях и их подвижность не может быть полностью описана схемой с одним наивероятнейшим временем релаксации. Использующиеся для количественного описания процессов молекулярной подвижности в полимерах дискретные и непрерывные спектры приводят к эквивалентным результатам. Однако при изучении механизмов медленных релаксационных процессов, связанных с флук-туационными надмолекулярными образованиями (различного вида микроблоками), дискретный спектр дает большую информацию. Перспективно использование дискретного спектра и при анализе других процессов релаксации, обусловленных локальной подвижностью. В то же время для процессов, связанных с сегментальной подвижностью, предпочтительнее использование непрерывного спектра, так как при этом на нем проявляется максимум, высота и ширина которого являются дополнительными к Igti параметрами, характеризующими их особенности.[1, С.145]

Престон [117], впервые описавший явление структурной неоднородности у вискозных волокон, считал, что оболочка образуется при вытягивании формующейся нити, когда поверхностные слои находятся в гелеобразном состоянии и ориентируются благодаря вытяжке, в то время как внутренние слои находятся в[8, С.217]

Природа нарушений сплошности тела может быть различна.. В низкомолекулярных твердых телах нарушение сплошности может быть вызвано внутренними напряжениями, возникшими при неравномерном охлаждении или в процессе обработки образца, наличием пор и т. д. Дефектные места в полимерах, кроме того, — результат их структурной неоднородности, т. е. свойства, заложенного в самой природе полимерного вещества. Это делает прочность полимеров структурно чувствительным свойством, реагирующим на любое изменение структуры и нарушение ее однородности. Однако неправильно будет из сказанного сделать вывод, что каждому полимеру соответствует определенная структура, обеспечивающая оптимум его механических свойств. На самом деле структура, оптимальная в одних условиях испытания, оказывается неудовлетворительной в других. Следовательно, прочность полимеров зависит от их структуры и условий испытания.[14, С.212]

Вращение зонда в таких сетчатых системах при температурах ниже Тст практически изотропно, а зависимости lgrc от 1/Т при различной концентрации ФГЭ (с увеличением содержания ФГЭ густота сетки уменьшается) описываются аррениу-совскими прямыми с увеличивающимся наклоном. Рост Е с разряжением сетки указывает на то, что движение зонда сопровождается перестройкой все более крупных кинетических единиц. В пользу этого свидетельствует линейная зависимость —Igto от Е сетчатого полимера. Для меток в области температур ниже Тст характер зависимостей от концентрации ФГЭ такой же, как для зонда. Вблизи Тст зависимость lgrc от 1/7 меток претерпевает излом. Происходит изменение характера движения метки от мелкомасштабного к сегментальному с большей энергией активации, которая, наоборот, уменьшается по мере разрыхления сетки. Зонд слабо чувствителен к появлению сегментального движения, поскольку локализуется преимущественно в дефектных областях сетки (дырках), размер которых значительно превышает объем радикала. Вместе с тем TC зонда растет, а Е падает с увеличением густоты сетки, что может свидетельствовать о росте структурной неоднородности системы: доля крупных дырок увеличивается при одновременном уменьшении общей доли свободного объема за счет более сшитых участков.[6, С.290]

Предельная прочность а„ меньше теоретической прочности от из-за структурной неоднородности материала и, следовательно, наличия в структуре прочных и слабых мест.[10, С.253]

Можно было предположить, что прекращение развития надреза обусловлено наличием в пленке инородного тела (волокна или кристалла), а также повышенной прочностью сферолитной ленты. Для проверки этого предположения были изготовлены образцы ППО без волокна, содержавшие ленты сфе-ролитного строения, полученные специальным приемом. Оказалось, что такие ленты не задерживают развития надреза. Таким образом, наличие структурной неоднородности в виде ленты из сферолитов недостаточно для ликвидации начавшегося разрушения. Из этого следует, что сферолитные ленты, получающиеся вследствие наличия структурообразователя, отличаются от образующихся без него лент из сферолитов либо всей своей внутренней структурой, либо особенностью поверхности.[11, С.439]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
3. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
4. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Бартенев Г.М. Физика полимеров, 1990, 433 с.
7. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
8. Серков А.Т. Вискозные волокна, 1980, 295 с.
9. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
10. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
13. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
14. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
15. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
19. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
20. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
21. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
23. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную