На главную

Статья по теме: Температурных коэффициентов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Рассмотрим теперь температурную зависимость степени набухания а, которая является одной из причин получения в термодинамически хороших растворителях как положительных, так и отрицательных значений температурных коэффициентов характеристической вязкости.[8, С.189]

Таким образом, стеклообразное состояние является неким «замороженным», кинетически стабильным, но термодинамически неравновесным состоянием, а не новой фазой, отличной от жидкой. Наблюдаемые температурные кривые различных температурных коэффициентов (рис. II. 7) вполне объяснимы с молекулярно-кине-тической точки зрения [39, с. 27; 40, с. 24; 42, с. 69—73]. Так, в стеклообразном состоянии поглощаемая при повышении температуры теплота идет только на увеличение интенсивности колебаний частиц, и теплоемкость определяется колебательными степенями свободы. В структурно-жидком состоянии, к которому относятся и высокоэластическое, и вязкотекучее деформационные состояния, при нагревании затрачивается добавочная теплота, идущая на увеличение внутренней энергии при переходе от низкотемпературной плотной к высокотемпературной рыхлой структуре. Вследствие этого теплоемкость полимерного стекла меньше теплоемкости полимера в структурно-жидком состоянии. Поэтому на температурной кривой теплоемкости при переходе от жидкости к стеклу наблюдается падение теплоемкости (кривая /, рис. II.7). Тешювде расширение стекла в твердом состоянии происходит только за счет увеличения ангармоничности колебаний. Но в структурно-жидком состоянии объем при нагревании дополнительно уве-[1, С.88]

В связи с тем, что изотермическая кристаллизация полностью описывается при сделанных предположениях о механизмах нуклеации и роста, необычайно высокий температурный коэффициент скорости кристаллизации должен, естественно, определяться температурными коэффициентами скорости этих двух процессов. Поэтому займемся каждым из температурных коэффициентов в отдельности.[6, С.237]

Относительная погрешность значений v, vg и t> (удельный объем аморфного полимера в стеклообразном состоянии) находится в пределах 0,1—0,3 %. Очевидно, погрешность значений va, которые находятся экстраполяцией кривой температурной зависимости удельного объема расплава полимера до 295 К, будет возрастать симбатно ширине температурного интервала от Тт до 295 К. Значения температурных коэффициентов удельных объемов v, va, vc и vg получены в предположении линейной зависимости соответствующих удельных объемов от температуры. Значения dvcldT не приводятся вследствие анизотропии теплового расширения кристаллических решеток полимеров, которая видна из различия значений коэффициентов линейного термического расширения для различных параметров элементарной ячейки (табл. 2.2).[7, С.123]

Зависимость удельного объема от температуры качественно полностью повторяет аналогичный график для температурной зависимости относительной энтальпии. Для некристаллизующихся полимеров график v=f (Т) состоит из двух линейных участков с углами наклона dvc/dT к dv^/dT соответственно для стеклообразного и высокоэластического состояния (расплава), которые пересекаются при температуре стеклования Тс. Значения температурных коэффициентов duc/dT и dvajdT (размерность— см3/г-град) можно оценить с помощью следующих эмпирических уравнений [4]:[5, С.9]

Клочко и Учурханов изучали проводимость, плотность и вязкость AgClCh в ацетоне, пиридине, анилине, нитробензоле, бензоле и толуоле при различных температурах. По сравнению с водными растворами [64] проводимость неводных имеет меньшую величину. В ацетоне изучена растворимость AgClO* при трех температурах: она оказалась равной 62,5; 64,10 и 65,44 вес. % AgClCh. В 41,2%-ном растворе при 50° проводимость равна 0,054 ом'1-см'1. Изломы на кривых температурных коэффициентов и изотермах проводимости указывают на возможность существования в растворах сольватаАдС1О4-4СзНвО[ 116].Максимальная величина проводимости AgClCh в пиридине равна при 50° 2,52 х X Ю~2 ом'1-см'1 для 20,2%-ного раствора. Потенциал разложения 13,26%-ного раствора несколько превышает 2 в; при электролизе этого раствора катод покрывается с обеих сторон мелкокристаллическим матовым осадком серебра [117].[11, С.20]

Для получения Т. л. п. применяют гл. обр. :шали; лаки этого назначения используют сравнительно ограниченно. К пигментам и наполнителям для Т. л. п. наряду с общими требованиями (см. Пигменты лакокрасочных материалов, Наполнители лакокрасочных материалов) предъявляют также пек-рые специфические. В частности, эти ингредиенты должны сохранять физич. и химич. свойства (цвет, пассивирующее действие и др.) в широком интервале темп-р, способствовать снижению внутренних напряжений в покрытии и сближению температурных коэффициентов расширения покрытия и подложки. Кроме того, пигменты и наполнители не должны оказывать каталитич. действия па термоокислительную деструкцию и сшивание пленкообразующего в условиях эксплуатации термостойких лакокрасочных покрытий (следствием сшивания м. б. повышение хрупкости покрытия, его растрескивание и отслаивание от подложки).[9, С.318]

Для получения Т. л. п. применяют гл. обр. эмали; лаки этого назначения используют сравнительно ограниченно. К пигментам и наполнителям для Т. л. п. наряду с общими требованиями (см. Пигменты лакокрасочных материалов, Наполнители лакокрасочных материалов) предъявляют также нек-рые специфиче-. ские. В частности, эти ингредиенты должны сохранять физич. и химич. свойства (цвет, пассивирующее действие и др.) в широком интервале темп-р, способствовать снижению внутренних напряжений в покрытии и сближению температурных коэффициентов расширения покрытия и подложки. Кроме того, пигменты и наполнители не должны оказывать каталитич. действия на термоокислительную деструкцию и сшивание пленкообразующего в условиях эксплуатации термостойких лакокрасочных покрытий (следствием сшивания м. б. повышение хрупкости покрытия, его растрескивание и отслаивание от подложки).[10, С.318]

Что касается изложенной релаксационной концепции, рационально объясняющей видимость перехода второго рода при его действительном отсутствии, то она позволяет с удобством использовать изменение физических свойств при стекловании для прямого измерения Тс. При этом принято считать, что температура структурного стеклования есть температура, при которой физические свойства вещества изменяются в аномальном интервале наиболее резко. На кривых свойство — температура (см. рис. II. 6) Тс приблизительно соответствует точке перелома. На кривых температурных коэффициентов (см. рис. П. 7), образующих в области стеклования перегиб, температура стеклования соответствует точке перегиба. При таком определении температура стеклования Тс в принципе не зависит от чувствительности прибора и точности измерения физических свойств. Часто Тс определяется как точка пересечения экстраполированных зависимостей, наблюдаемых вне области стеклования (см. рис. П. 6). Предпочтение §; отдается тем свойствам, температурные зависимости которых в структурно-жидком и стеклообраз-[1, С.91]

Высокая чувствительность скорости нуклеации к степени переохлаждения или пересыщения в многокомпонентных системах хорошо установлена на мономерных веществах. Например, Торнбалл [48] показал, что образец ртути может быть выдержан в течение 1 ч при переохлаждении в 43 град без каких-либо фазовых изменений, однако дальнейшее охлаждение всего на 3 град приводит к отвердеванию образца в течение 1 мин. Подобная же зависимость скорости кристаллизации от температуры наблюдается, как уже отмечалось, и для полимерных систем. Поэтому вполне уместно предположить, что теория нуклеации может быть использована для объяснения наблюдаемых температурных коэффициентов скорости кристаллизации полимеров.[6, С.243]

Кемпбелл и сотрудники изучали проводимость, вязкость и плотность в системе серная кислота — вода при 25 и 75° и определили на изотерме проводимость при 35 вес. % ШЗОй максимум, который с повышением температуры сдвигается в сторону кислоты [49]. Этот максимум отмечают также Клочко и Курбанов [48], связывая его с составом эвтектической точки на диаграмме плавкости. Клочко и Курбанов изучали также по проводимости, вязкости и плотности двойные системы, образуемые водой, с одной стороны, и хлороводородом и хлорной и фосфорной кислотами,— с другой. Состав максимума на изотермах проводимости, связанный с началом резкого подъема вязкости, меньше состава эвтектической («криогидратной») точки на 3 мол. % для системы вода — хлорводород и на 2 мол. %—для системы вода — хлорная кислота. Возможно, однако, что данные термического анализа нуждаются в уточнении. Трех- и четырехвод-ные гидраты отражаются на диаграммах свойств и температурных коэффициентов [50]. В системе фосфорная кислота — вода для ряда составов температурные коэффициен-ы проводимости становятся отрицательными, начиная с определенной для каждого состава температуры, где они проходят через нуль. Кривая изменения этих температур нулевого температурного коэффициента с составом проходит через минимум при 5 мол.% кислоты и 70° [51].[11, С.11]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика полимеров, 1990, 433 с.
3. Серков А.Т. Вискозные волокна, 1980, 295 с.
4. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
5. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
6. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
7. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
8. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.

На главную