На главную

Статья по теме: ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Термическое разложение происходит при нагревании до 70— 90 °С с образованием кислот и альдегидов. Разложение проводят, постепенно увеличивая нагрев, так как при быстром нагревании до указанных температур в ряде случаев озониды взрываются. В отличие от разложения других перекиеных соединений реакция протекает не по 'радикальному, а по ионному механизму[4, С.95]

Из гидроперекисей углеводородов получила наибольшее распространение гидроперекись изопропилбензола (кумола). Термическое разложение гидроперекиси кумола происходит, в зависимости от природы растворителя, при 70—130 °С с образованием двух радикалов:[1, С.135]

Полимеры не растворяются в органических растворителях. Наибольшей термической устойчивостью обладают клешневидные полимеры, содержащие цинк, которые не разлагаются даже при 380°. Металлы переменной валентности, применяемые для комплексообра-зования, способны окисляться до более высокой степени, и реакции окисления могут каталитически влиять на термическое разложение полимера.[3, С.507]

Полиизобутилен набухает в диэтиловом эфире, бутилацетате, животных и растительных маслах. Он нерастворим в низших спиртах, ацетоне, этиленгликоле, глицерине. Благодаря насыщенности полимерных цепей полиизобутилен обладает высоким сопротивлением к тепловому и световому старению, а также повышенной химической стойкостью. Высокая термостойкость полиизобутилена позволяет перерабатывать его при 140—200°С, при этом молекулярная масса практически не изменяется. Термическое разложение полиизобутилена происходит при 300 °С и выше.[1, С.338]

С изменением физических свойств по мере увеличения молекулярной массы непосредственно связана еще одна особенность высокомолекулярных соединений. С увеличением молекулярной массы давление паров химических соединений уменьшается и задолго до достижения значений молекулярных масс, характерных для высокомолекулярных соединений, падает практически до нуля. При нагревании высокомолекулярных соединений не наблюдается заметной летучести, а при определенной температуре наступает термическое разложение вещества с разрывом химических связей и перегруппировкой атомов. Высокомолекулярные соединения практически нелетучи и не могут быть переведены в газообразное состояние.[8, С.43]

Широко распространен метод термогравиметрического анализа (ТГА), основанный на измерении изменения массы исследуемого образца при нагревании. Различают динамический термогравиметрический анализ (ДТГА), при котором непрерывно отмечают массу исследуемого вещества в процессе нагревания с определенной скоростью, и изотермический термогравиметрический анализ (ИТГА), при котором навеску исследуемого вещества нагревают при одной определенной температуре и определяют потерю массы за определенный промежуток времени. Нагревание проводят либо в атмосфере инертного газа, либо на воздухе. В первом случае исследуют чисто термическое разложение полимера, во втором— термоокислительный распад. Нагревание можно проводить[6, С.210]

Измерения тепловых характеристик представляют интерес не только с точки зрения энергетического баланса процесса образования трещины серебра, но также потому, что они позволяют рассчитать рост локальной температуры АГ0, вызванный раскрытием и разрывом такой трещины в ПММА. Дёлль [30] предположил, что вначале тепло Qo было сосредоточено в области материала, содержащего трещины серебра. Для значений плотности 0,6 г/см3, удельной теплоемкости 1,46 Дж/(г-К), раскрытия трещины серебра 1,65 мкм и Qo = 335 Дж/м2 он получил ДТ0 = 230 К. Это значение для ПММА соответствует теоретическим оценкам Вейхерта и Шёнерта [185] и данным ПК-измерений Фюллера и др. [184]. Последние определили в интервале значений а от 200 до 600 м/с постоянную величину AT, равную 500 К. Одновременно регистрируемое увеличение Q(d) означает, что пластическое деформирование у вершины трещины охватывает более обширную область при более высоких скоростях роста трещины. В предварительных экспериментах с ПС получено АГ = 400 К и более низкое количество тепла [184]. Эти значения температур, конечно, велики, хотя и возможны. Они означают, что при таких условиях должно происходить не только плавление, но и термическое разложение материала. В то же время они согласуются с более высокими приращениями температуры (в несколько тысяч граду-[2, С.382]

Наиболее удобным методом получения пятнфтористого фосфора в лабораторном масштабе является термическое разложение арилдиазоиийгексафторфосфата. Го-чь в кспнчествс 3—12 г нагревают при 150—160 в перегонной колбе, и питифтсристый фосфор[10, С.307]

Одной из наиболее сложных проблем безопасности производств ПЭВД является локализация аварийных сбросов с целью ограничения их опасных последствий. Различают две разновидности аварийных сбро- , сов. В первом случае сбросы осуществляются в отсутствие разложения, при этом газообразные продукты выброса представляют собой этилен с температурой 260—320 С. Вторая разновидность, наиболее опасная, характеризуется тем, что выбросу предшествует термическое разложение этилена. В зависимости от глубины распада этилена (реакции термического разложения приведены в гл. 4) меняется состав, давление и температура продуктов разложения, которая может достичь в предельном случае 1500 °С. Глубина разложения определяется параметрами среды в момент начала разложения, а также конструкцией аппаратов и характеристиками[12, С.39]

Действие модификаторов типа РУ усиливается н присутствии некоторых дополнительных активаторов (синергизм), таких как коллоидный диоксид кремния (белая сажа), природные алюмосиликаты, гекса х л ор-гс- ксилол, нитрозосоединсния, некоторые соединения кобальта и др. Большой практический интерес представляют комбинации PV-fSiOs, известные как системы HRH. Лкти-нирующее действие этого минерального наполнителя объясняется сю влиянием па химические превращении модификатора: зн счет протежировании уротропина силанольными группами, содержащимися на поверхности Si(\ облегчаете и его термическое разложение, а регулируй кислотность среды, SiO^ направляет i юл икон -денсационные процессы в массе каучука в сторону преимущественного образования оли гомеров линейного строения, лучше диффундирующих к гранит- резина корд. Ниже приведены значения прочности свнзи тканей из полиамидных волокон с резиной из бута -лиеннитрильных кнучукон (пероксидная вулканизация) н зависимости от наличия минеральных наполнителей (кН/м):[11, С.35]

Т, °С Среда Фаза I (деполимеризация) Фаза II (термическое разложение)[14, С.163]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
5. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
6. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
7. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
8. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
9. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
10. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
11. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
12. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
13. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
14. Смирнов О.В. Поликарбонаты, 1975, 288 с.
15. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
16. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
17. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
18. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
19. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
20. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
21. Малышев А.И. Анализ резин, 1977, 233 с.
22. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
23. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
24. Пашин Ю.А. Фторопласты, 1978, 233 с.
25. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
26. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
27. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
28. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
29. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
30. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
31. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
32. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
33. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
34. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
35. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
36. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
37. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
38. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
39. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
40. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
41. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
42. Бажант В.N. Силивоны, 1950, 710 с.
43. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
44. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
45. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
46. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
47. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
48. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
49. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
50. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
51. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
52. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.
53. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную