На главную

Статья по теме: Уменьшения молекулярной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

По мере уменьшения молекулярной массы полимера происходит некоторое сужение ММР. Так, для ПЭНД, полученного на каталитических системах Al(C2Hs)3^ — TiCl4 и А1(С2Н5)2_С1 — Т1СЦ, при увеличении ПТР от 0,2 до 10 г/10 мин Mw/Mn уменьшается в первом случае с 10—12 до 5, а во втором—с 16—18 до 8. Подобная картина характерна и для СЭП. По мере увеличения в ПЭНД и СЭП содержания фракций с молекулярной массой 106 и более наблюдается возрастание прочности при разрыве при повышенных температурах и стойкости к растрескиванию. Объяснить это можно тем, что с ростом молекулярной массы и количества высокомолекулярных Фракций увеличивается число «проходных» молекул, которые как бы увеличивают количество физических узлов (зацеплений молекул) и более прочно связывают между собой все элементы надмолекулярной структуры [43].[5, С.29]

Взаимодействие растущего радикала с молекулой передатчика цепи приводит к прекращению роста данной материальной цепи, т. е. снижает молекулярную массу образующегося полимера. Способность растворителей участвовать в передаче цепи при радикальной полимеризации данного мономера характеризуют константой передачи Cs = ks/kp (табл. 1.1). Реакции передачи цепи широко используются при синтезе полимеров для регулирования их молекулярных масс. Для уменьшения молекулярной массы синтезируемого полимера обычно применяют передатчики со значениями Cs > 1Q-3, которые называют регуляторами, например:[3, С.12]

В результате реакции разрыва макромолекулярных цепей образующиеся концевые свободные радикалы стабилизируются, отрывая водород от макромолекул полиизопрена или присоединяя радикал водорода, выделяющийся при облучении светом. И в том, и в другом случае происходит стабилизация обрывков макромолекул и снижение их молекулярной массы. Этот процесс больше выражен в разбавленных растворах полимера, что и проявляется в монотонном снижении их вязкости вследствие уменьшения молекулярной массы. В концентрированных растворах и в массе нолиизопрена преобладают реакции соединения макромолекул друг с другом (сшивание). Вследствие одновременно протекающих процессов деструкции и сшивания изменяется не только средняя молекулярная масса полимера, по и расширяется его молекуляр-но-массовое распределение.[4, С.243]

Общий вывод из рассмотренных выше работ [49—52] заключается в том, что наклоны кривых зависимости напряжения от деформации и концентрации радикалов от деформации качественно соответствуют друг другу. Для количественного соответствия следовало бы предположить, что число разрывов цепей в 20—40 раз больше, чем регистрируется свободных радикалов. По-видимому, подобное предположение слишком сильное, если учесть, что не происходит соответствующего значительного уменьшения молекулярной массы и что не обязательно снижается работоспособность волокнистого материала за пределами непосредственной зоны разрушения. Преворсек [53] показал, что прочность сегментов волокна при неоднократном воздействии растягивающей нагрузки действительно не уменьшалась. Разрыв сегментов, происходящий при первом цикле нагружения, сопровождается увеличением прочности материала по сравнению с прочностью исходного волокна, и такая прочность сохраняется при последующем нагружении (рис. 8.14). Поэтому кажется более вероятным, что число разрывов цепей по порядку величины соответствует данным исследований методом ЭПР, т. е. составляет 1016—5-Ю17 см~3. Сама по себе подобная концентрация разрывов не является решающей для ослабления полимерной системы, поскольку при разрушении она составляет лишь 0,002—0,1 % от всех аморфных[1, С.249]

Для систем, подвергающихся деструкции по закону случая, скорость уменьшения молекулярной массы в любой момент времени (Мт) пропорциональна квадрату -молекулярной массы полимера в тот же момент времени[11, С.162]

При переработке резины и каучука вальцевание может производиться в следующих случаях: I) пластикация каучука — повышение его пластичности путем уменьшения молекулярной массы и изменения молекулярно-массового распределения за счет механохимическсй деструкции; 2) изготовление резиновых смесей путем последовательного введения ингредиентов в каучук; 3) подогрев готовых смесей перед переработкой (питание каландров, шприц-машин); 4) введение вулканизующих агентов в предварительно приготовленную смесь; 5) получение листов из резиновых смесей (листование); 6) дробление и размол регенерата, а также обработка измельченного регенерата; 7) очистка регенерата от посторонних включений (рафинирование).[13, С.363]

Ввиду того, что средняя молекулярная масса образующегося полимера обратно пропорциональна корню квадратному из концентрации инициатора, значение молекулярной массы можно, в принципе, контролировать, задавая концентрацию используемого инициатора. Однако из-за того, что этот прием обычно связан с использованием слишком высоких концентраций инициатора (обуславливающих очень большие скорости полимеризации), на практике для уменьшения молекулярной массы образующихся в дисперсионной полимеризации акриловых полимеров используют добавление подходящего агента передачи цепи. Очевидно, что при учете особенностей дисперсионной полимеризации важной характеристикой агента передачи цепи является его способность к распределению между частицами полимера и разбавителем. В общем, наиболее эффективными передатчиками для контроля молекулярной массы при дисперсионной полимеризации в алифатических углеводородных разбавителях являются алкилмер-каптаны со средней длиной алкила и сбалансированным распределением между двумя фазами, необходимым для адекватного содержания агента передачи в частицах (зоне полимеризации).[14, С.216]

При ацетилировании целлюлозы в гетерогенной среде получает ся первичный ацетат целлюлозы, который может быть использова] для получения триацетатных волокон. В этом случае конечны! продукт реакции (триацетат целлюлозы) не нужно высаживать и раствора, что значительно упрощает процесс, однако концентриро ванные растворы такого продукта обычно имеют большую вязкость чем из триацетата, полученного ацетилированием в гомогенно] среде. Поэтому метод ацетилирования не находил широкого при менения, несмотря на его простоту. В последние годы разработа] метод регулируемого снижения вязкости растворов триацетат; целлюлозы в основном за счет уменьшения молекулярной масс! добавлением по окончании ацетилирования серной кислоты (0,5-0,6% от массы исходной целлюлозы). Активация целлюлозы npi ацетилировании ее в гетерогенной среде проводится так же, как i перед ацетилированием в гомогенной среде периодическим спосо бом.[9, С.234]

Рис. 292. Кривые уменьшения молекулярной массы полистирола при виброизмельчении:[11, С.347]

ИЗМЕНЕНИЕ СВОЙСТВ ГРАНИЧНЫХ СЛОЕВ КАК СЛЕДСТВИЕ УМЕНЬШЕНИЯ МОЛЕКУЛЯРНОЙ ПОДВИЖНОСТИ[12, С.162]

При постоянном ММР влияние увеличения температуры или уменьшения молекулярной массы проявляются в смещении зависимости логарифма вязкости от скорости сдвига вертикально в сторону низких вязкостей, а горизонтально — в сторону более высоких скоростей сдвига [13-15]. Вертикальное смещение такое же, как для вязкостей нулевого сдвига. При изменении температуры горизонтальный сдвиг имеет такую же величину, как вертикальный. При изменении молекулярного веса горизонтальное смещение, как правило, меньше по величине, чем вертикальное.[15, С.56]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
6. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
7. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
10. Серков А.Т. Вискозные волокна, 1980, 295 с.
11. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
12. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
13. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
14. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
15. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.

На главную