На главную

Статья по теме: Бесконечном разбавлении

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Задача. Определить константу седиментации при бесконечном разбавлении для растворов триацетата целлюлозы в диметилсульфоксиде, если известны концентрации растворов и соответствующие константы седиментации:[2, С.47]

Экспериментальное определение коэффициента относительной летучести углеводородов при бесконечном разбавлении экстраген-том а°° сравнительно легко и весьма точно проводится методом газо-жидкостной хроматографии, когда экстрагент используется в качестве стационарной фазы. Для этой цели может быть использована установка, описанная в работе [10].[1, С.670]

Однако даже при значительном разбавлении раствора не удается установить область, в которой отношение Р/С оставалось бы постоянным с изменением концентрации. Для определения величины Р/С при бесконечном разбавлении производят экстраполяцию Р/С /(С) к значениям С, равным нулю (см. рис. 36). Недостатком этого метода является неточность экстраполяции is связи с тем, что при сильных разбавлениях сохраняется криволинейная зависимость Р/С --/(С).[3, С.79]

Исследование закономерности фазового равновесия в системах углеводород — полярный экстрагент позволило предложить [11] удобный метод, дающий возможность рассчитать относительные коэффициенты активности уи = Yi/Y; различных пар углеводородов в присутствии полярного экстрагента (при заданном составе раствора и температуре), если известно значение YOTH одной пары углеводородов с различной химической активностью и в данном растворе и значение YIJ всех углеводородов в другом растворе, содержащем полярный растворитель (не обязательно заданный), в частности если известны значения YOTH углеводородов в экстр-агенте при бесконечном разбавлении (Y~TH). Последнее весьма важно, так как значения Y^H МОГУТ быть определены методом газожидкостной хроматографии.[1, С.670]

Седиментационный метод определения молекулярного веса полимера основан на установлении седимента-ционного равновесия в растворах полимера. Раствор полимера фракционируют в ультрацентрифуге и одновременно определяют молекулярный вес каждой фракции полимера, т. е. из каждого слоя раствора после его расслаивания. Для этого определяют скорость седиментации каждой фракции исследуемого полимера (в растворах с известными концентрациями). Измерение скорости седиментации основано на наблюдении за передвижением границы раздела между раствором и растворителем в ячейке центрифуги. По данным наблюдений строят график изменения скорости седиментации при различной концентрации и определяют по этому графику константу седиментации 50 данного полимера при бес конечном разбавлении его раствора. Одновременно определяют константу диффузии D0 полимера при бесконечном разбавлении. Молекулярный вес каждой фракции вычисляют по следующему уравнению:[3, С.80]

Величина наблюдаемого осмотического давления Р пропорциональна молекулярному весу М полимера и его концентрации С в растворе, т. е. Р/С=/(МОСМ.). Однако для растворов одного и того же полимера отношение величины осмотического давления к концентрации, даже при большом разбавлении, не остается постоянным с изменением концентрации. Это объясняется значительными силами межмолекулярного сцепления, постепенно изменяющимся с изменением концентрации полимера в растворе, а также явлением все нарастающей сольватации. Для установления истинного значения величины Р/С необходимо определить осмотическое давление в разбавленных растворах полимера различной концентрации. По данным, полученным в результате этих измерений, строят кривую в координатах Р/С—С и продолжают начертание кривой до пересечения ее с осью Р/С (рис. 36), находи таким путем величину осмотического давления при бесконечном разбавлении раствора данного полимера. Полученные данные позволяют судить о величине молекулярного веса полимеру[3, С.73]

При бесконечном разбавлении мольная доля растворенного вещества стремится к нулю:[5, С.167]

При бесконечном разбавлении уравнение (11.11) принимает вид[5, С.168]

Экстраполяция полученной прямой на нулевую концентрацию дает значение (AR/c)0 при бесконечном разбавлении. Расчет среднечисленной молекулярной массы производится по формуле (14).[4, С.142]

Поскольку реальные растворы не подчиняются закону Рауля, выведенная зависимость справедлива при бесконечном разбавлении[4, С.146]

Однако высокая чувствительность современных приборов позволяет работать с растворами небольшой концентрации и исключить при расчетах определение ЛГ/а при бесконечном разбавлении.[4, С.146]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
5. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
9. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Северс Э.Т. Реология полимеров, 1966, 199 с.
12. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
13. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
14. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
15. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
16. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
17. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
18. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
19. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
20. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
21. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.

На главную