На главную

Статья по теме: Ингредиентов резиновых

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Большинство ингредиентов резиновых смесей, т. е. компоненты серных вулканизующих систем и стабилизаторы, представляют собой молекулярные кристаллы (исключение составляют оксид цинка, жидкие ускорители и стабилизаторы), структуры которых формируются за счет межмолекулярных сил по принципу плотнейшей упаковки [1]. При переработке резиновых смесей необходимо, чтобы кристаллические ингредиенты хорошо диспергировались и растворялись в эластомере и в определенный момент проявляли высокую функциональную активность в качестве замедлителей подвулканиза-ции и ускорителей вулканизации резиновых смесей, против о-сгарителей и противоутомителей резин.[10, С.6]

Основными направлениями в усовершенствовании оборудования являются полная автоматизация всех технологических и вспомогательных операций и особенно загрузки и выгрузки, использование малооперационной, безотходной, энергосберегающей технологии с защитой окружающей среды, автоматизация и оптимизация управления, уменьшение веса и стоимости оборудования, улучшение качества его работы. Усовершенствование оборудования для приема и хранения ингредиентов резиновых смесей осуществляется в направлениях увеличения экономической его целесообразности, уменьшения стоимости, безотказности в автоматизированной работе, уменьшения загрязнения окружающей среды, улавливания и сбора пыли и возврата ее в производтво и т. д. Система управления должна обеспечивать надежность, точность, безотказность в работе, простоту и наглядность управления. Бункеры для хранения ингредиентов, транспортные системы, дозаторное, весовое хозяйство и загрузочные устройства должны работать в автоматическом режиме и управляться диспетчером с помощью клавиатуры управления и визуального дисплея электронно-вычислительной системы управления. Система управления должна быть расположена в главной диспетчерской подготовительного отделения. Прежде чем включить определенную линию транспортной или загрузочной системы, ЭВМ должна проверить, чтобы все приводы были установлены на «Автоматическое» управление.[6, С.58]

Централизация процессов дозирования ингредиентов резиновых смесей на участке, удаленном от смесительного отделения, способствует выполнению всех операций по обработке материалов в одной зоне, где необходимо предусмотреть систему отсоса и вентиляции.[5, С.127]

Различные способы физической модификации ингредиентов резиновых смесей применяются для придания им технологичности и экологической безопасности, в частности, при получении предварительно диспергированных пастообразных композиций из нескольких порошкообразных компонентов, капсулировании в микрокапсулы из полимеров и превращении в композиции с полимерным связующим. Однако все эти способы предполагают создание весьма сложных технологических процессов с применением дополнительных материалов в качестве связующих.[10, С.7]

Одним из основных физико-химических свойств сыпучих ингредиентов резиновых смесей является их дисперсность, характеризующаяся размером частиц или удельной поверхностью. Классическим методом определения размера частиц является электронно-микроскопический, позволяющий определить не только среднее значение размера частиц и удельную поверхность, но и все распределения по диаметрам частиц, что является наиболее исчерпывающей характеристикой дисперсности. Классическим методом определения удельной поверхности веществ является метод низкотемпературной адсорбции азота. В литературе этот метод известен под названием метода БЭТ [214].[9, С.93]

Такая же закономерность была установлена при испытаниях резин на влагостойкость [16]. За 4 года (по сравнению с данными за 1 год) сорбция воды резинами на основе СКН-18, СКН-26, СКН-40, СКТ и СКС-30-1 возросла менее чем в 1,5 раза, а резинами на натуральном и хлоропреновом каучуках — более чем в 2 раза. При наполнении последних сажей ДГ-100 показатели их влагостойкости за этот срок оказались в значительной мере стабильнее. Последнее обстоятельство доказывает насколько велико влияние ингредиентов резиновых смесей на их влагостойкость.[2, С.118]

Однако наиболее существенным фактором, определившим бурное развитие химии и технологии жидких каучуков, было создание возможности перевода предприятий резиновой промышленности на совершенно новую, полностью автоматизированную, непрерывную технологию изготовления изделий. Принципиальное отличие этой технологии от известной состоит в том, что процессы смешения и структурирования жидких каучуков по сравнению с высокомолекулярными каучуками осуществляются без применения высокого давления и энергоемкого оборудования. При этом может быть достигнуто не только резкое .сокращение числа ингредиентов резиновых смесей, необходимых рабочих площадей и тяжелого оборудования, но и весьма значительное уменьшение численности рабочего персонала при практически полном устранении тяжелого ручного труда [1].[1, С.412]

Резина представляет собой многокомпонентную систему, состоящую из эластомера (каучука) и добавок, которые вступают в сложное взаимодействие с каучуком и друг с другом. Основной компонент системы — эластомер (каучук); он представляет собой полимер, отличительной особенностью которого является низкая температура стеклования или кристаллизации, обеспечивающая изделиям из этих полимеров возможность эксплуатации в высокоэластичном состоянии в достаточно широком температурном интервале (—100-f--^ +300 °С). В настоящее время кроме натурального каучука (НК) резиновая промышленность имеет в своем распоряжении широкий ассортимент синтетических каучуков (СК), что позволяет создавать резиновые изделия с весьма разнообразными свойствами. Возможности резиновой промышленности в этом плане расширяются при использовании метода совмещения каучуков друг с другом или с другими полимерами. Применение различных видов добавок (ингредиентов резиновых смесей) позволяет еще больше разнообразить свойства резин. Невулканизованную смесь каучуков с ингредиентами называют резиновой смесью, и она является основным материалом, из которого изготавливается резиновое изделие.[6, С.8]

При изучении состава отходов производства и методов извлечения ценных компонентов были выявлены резервы, использование которых может дать значительный экономический эффект. Максимальный эффект может быть достигнут при выдаче рекомендаций и технологических регламентов по использованию текстильных отходов, регенерата, горелых резин; по утилизации новых бракованных покрышек; по отработке технологии получения регенерата и резиновой крошки с использованием метода замораживания; по проектированию производства регенерата из отработанных покрышек с металлокордным брекером; по проектированию изделий, получаемые из отходов производства (многооборотной тары; плит для животноводческих помещений; цветочных горшков); по отработке технологии на проектирование производства резинового порошка; по отработке технологии на проектирование производства регенерата из крупногабаритных и сверхкрупногабаритных покрышек; по отработке технологии на проектирование производства изделий расширенного ассортимента, получаемых из отходов производства с учетом" опыта зарубежных фирм (ремни, обувь, автомобильные воздушные и водяные шланги, брызговики и щитки для транспортных средств и др.); по изготовлению складских многооборотных фа-неро-резиновых ящиков, получаемых из бросовых отходов резинового и фанерного производства; по изучению спроса на изделия, получаемые из отходов производства; по переработке резиновых отходов методом пиролиза; по утилизации смешанной пыли ингредиентов; по изготовлению и выпуску паст, гранул, чешуек на основе сыпучих ингредиентов резиновых смесей; по выпуску эффективного пылеочистного оборудования во взрыво-безопасном исполнении; по обезвреживанию (улавливанию) газообразных выбросов (летучие органические вещества, оксид углерода, сернистый ангидрид, формальдегид и др.); по рекуперации низкоконцентрированных выбросов бензина; по выпуску отечественного оборудования для уничтожения (сжигания) неперерабатываемых отходов шинного производства с утилизацией полученного тепла.[5, С.185]

Пыление ингредиентов резиновых смесей начинается уже в процессах их производства. При этом концентрация пыли вследствие несовершенства технологического оборудования и применения ручного труда может достигать значительных величин. Так, на заключительных операциях в производстве ускорителей (сушка, размол, упаковка) содержание в воздухе ДФГ составляет сотни мг на 1 м3 воздуха. На тех же операциях были определены высокие концентрации ДМДТКЦ, ДЭДТКЦ,[10, С.50]

Большинство ингредиентов резиновых смесей представляют собой токсические порошкообразные компоненты, способные к интенсивному пылению при проведении подготовительных операций, развеске, транспортировке и загрузке в резиносмесители.[10, С.50]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
6. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
7. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
8. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
9. Малышев А.И. Анализ резин, 1977, 233 с.
10. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
11. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
12. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
13. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
14. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
15. Семенович Г.М. справочник по физической химии полимеров том 3, 1985, 592 с.
16. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
17. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
18. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
21. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
22. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
23. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
24. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
25. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
26. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную