На главную

Статья по теме: Разрушение полимерных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Хрупкое разрушение полимерных стекол происходит в два этапа (см. с 419). На первом происходит растяжение" на отрыв (рис. 112, а) за счет первичных трещин с образованием зеркальной поверхности разрыва; гиперболы, появляющиеся на второй стадии, представляют собой линии сколов, полученных при встрече фронтов двух трещин (рис. 112,6). Сливаясь, гиперболы образуют шероховатую поверхность. Поэтому на поверхности разрыва образца из полиметилметакрилата наблюдаются две зоны: зеркальная и шероховатая.[3, С.420]

Как следует из анализа приведенных выше результатов, разрушение полимерных тел под действием электрических сил протекает по законам, схожим с законами их разрушения под действием механических сил. В самом деле, разрушающее напряжение (механическое) характеризуется статистическим распределением пропорционально множителю еи/КТ; при конечных скоростях нагру-жения увеличивается с увеличением интенсивности межмолекулярного взаимодействия; зависит от размеров образцов.[5, С.256]

Глобулярные структуры оказывают сильное влияние на механические свойства полимеров. Например, прочность казеиновых пленок глобулярного строения намного меньше прочности пленок, состоящих из вытянутых молекул того же вещества. Разрушение полимерных стекол с устойчивой глобулярной структурой происходит при очень малых деформациях вследствие распада тела по границам глобул.[3, С.432]

Разложение уретана на первичный амин и олефин преобладает в тех случаях, когда спирт, взятый для получения уретана, легко дегидратируется. Реакции образования уретана и последующего его разложения используются для дегидратации некоторых спиртов, например третичных. Такие превращения (при 200 — 250 °С) иногда происходят и с уретанами, образованными из первичных и вторичных спиртов. Реакция разложения полиуретанов может вызвать разрушение полимерных цепей.[10, С.124]

Однако отмечены случаи и увеличения интенсивности эмиссии во времени. Хотя причины этого весьма интересного явления не установлены, не исключено, что оно связано с переупаковкой и последующим образованием надмолекулярных структур в свежеобразованном полимерном слое, возникающем при нарушении контакта с другой твердой фазой. Эмигрирующие электроны обладают достаточно высокой энергией и, несомненно, могут являться одной из основных причин возникновения первичных активных состояний, инициирующих последующие превращения в данной полимерной системе. Прямой связи эмиссии с последующими превращениями пока не установлено, за исключением инициирования полиме-ризационных процессов, что подробно будет рассмотрено в разделе синтеза, но есть все основания утверждать, что эмиссия сопровождает деформацию и разрушение полимерных систем и определяет конечное изменение их свойств при различных 'видах механической переработки.[4, С.58]

Авторы отводят главную роль фактору времени, корректируя понятие предела прочности. В старом понимании этот термин означал усилие разрыва, а продолжительность действия напряжения до разрушения не принималась во внимание. В действительности это понятие подразумевает долговечность образца при данной нагрузке, а не его предел прочности. Полученное отношение позволило сделать вывод о том, что разрыв является активационным процессом, скорость которого определяется тепловыми флуктуациями, зависящими от значений КТ. Для разрушения связей, определяющих прочность полимера, необходимо, чтобы скомпенсировался энергетический барьер |ю, величина которого зависит от природы химических связей. Установлено также, что энергетический барьер ц0 под действием растяжения уменьшается на значение 0Y- Итак, чем больше нагрузка на материал, тем меньше энергетический барьер, препятствующий процессу разрыва. Уравнение позволяет глубже выяснить механизм деструкции путем установления зависимости, существующей между энергетическим барьером ц0 и структурными элементами (межмолекулярными силами и химическими связями), которые обусловливают прочностные свойства исследуемого полимера. Определив энергетический барьер ц0, авторы пришли к выводу, что значения ц,0 по порядку величины совпадают с величиной энергии химических связей (45 ккал/моль). Таким образом, разрушение полимерных волокон под действием растяжения, согласно проведенным исследованиям, развивается во времени, зависит от интенсивности нагрузки и возникает в результате разрыва химических связей. Межмолекулярные связи[7, С.27]

Цой Б. и др. Прочность и разрушение полимерных[2, С.423]

5) Разрушение полимерных тел в условиях УДИ протекает по механизму, отличающемуся от механизма «магистральной трещины», в частности, процесс формирования порошкообразных частиц имеет критический характер [24, 25].[6, С.272]

11.12. РАЗРУШЕНИЕ ПОЛИМЕРНЫХ СТЕКОЛ С ОБРАЗОВАНИЕМ КРЕИЗОВ (ТРЕЩИН «СЕРЕБРА»)[1, С.321]

11.12. Разрушение полимерных стекол с образованием крейзов (трещин «серебра») ......................... 321[1, С.7]

11.11. КВАЗИХРУПКОЕ РАЗРУШЕНИЕ ПОЛИМЕРНЫХ СТЕКОЛ[1, С.314]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
3. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
4. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
5. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
6. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
7. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
8. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
9. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
10. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную