На главную

Статья по теме: Увеличения интенсивности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Однако отмечены случаи и увеличения интенсивности эмиссии во времени. Хотя причины этого весьма интересного явления не установлены, не исключено, что оно связано с переупаковкой и последующим образованием надмолекулярных структур в свежеобразованном полимерном слое, возникающем при нарушении контакта с другой твердой фазой. Эмигрирующие электроны обладают достаточно высокой энергией и, несомненно, могут являться одной из основных причин возникновения первичных активных состояний, инициирующих последующие превращения в данной полимерной системе. Прямой связи эмиссии с последующими превращениями пока не установлено, за исключением инициирования полиме-ризационных процессов, что подробно будет рассмотрено в разделе синтеза, но есть все основания утверждать, что эмиссия сопровождает деформацию и разрушение полимерных систем и определяет конечное изменение их свойств при различных 'видах механической переработки.[9, С.58]

Тепловое расширение у стекла в твердом состоянии происходит только за счет увеличения интенсивности нелинейных колебаний частиц, так как структура вещества не изменяется. Но в жидком состоянии (выше температуры стеклования) объем вещества дополнительно увеличивается за счет перестройки структуры, характеризующейся все менее и менее плотным расположением частиц. Поэтому коэффициент объемного или линейного расширения у ве-[2, С.41]

Такой вывод вытекает из уравнения (36), согласно которому с повышением температуры время релаксации уменьшается, т. е. вследствие увеличения интенсивности теплового движения звеньев их перегруппировки происходят быстрее. Таким образом, изменение температуры должно сказываться" на скорости релаксационных процессов.[4, С.171]

Степе_нь молекулярной упорядоченности в некристаллическом полимере зависит от температуры. При повышенных температурах (в вязкотекучем состоянии) элементы структуры полимера вследствие ослабления взаимодействия между макромолекулами и увеличения интенсивности теплового движения становятся неустойчивыми образованиями и распадаются. Однако некоторые процессы молекулярной упорядоченности протекают и при высоких температурах, благодаря чему возникают небольшие упорядоченные мик-[2, С.166]

Более технологичным является перемешивание поли меризационной массы газовым потоком этилена, барбо тирующего через суспензию полиэтилена в реакторе. Пр^ этом происходит и теплосъем, так как испарение рас творителя приводит к охлаждению реакционной массы Для увеличения интенсивности испарения производится принудительная циркуляция этилена и паров бензина че рез суспензию полимера в реакторе с помощью газо дувки или компрессора. Теплосъем осуществляется в охлаждаемом водой холодильнике, через который прохо дит парогазовая смесь (рис. 1.15) [46].[6, С.36]

Для придания вытянутым полипропиленовым волокнам без-усадочности в сухом и влажном состояниях (при носке, стирке, сушке, утюжке) их подвергают фиксации, после которой опи сохраняют свои размеры постоянными при любой температуре. Фиксация необходима также для улучшения грифа волокна, устранения сминаемости н т. п. [44—46]. В процессе фиксации снимаются внутренние напряжения с вытянутого волокна, что достигается за счет увеличения интенсивности межмолекулярного взаимодействия.[5, С.245]

На рис. V. 13 показана зависимость амплитуды деформации от температуры при различных частотах (или периодах) действия силы. Из рисунка следует, что при низких температурах (в области стеклообразного состояния) амплитуда деформации очень мала и практически не зависит от частоты действия силы. В области стеклообразного состояния время релаксации намного больше времени деформации, поэтому практически сколь угодно длительный промежуток времени оказывается недостаточным для перегруппировки звеньев макромолекул. С повышением температуры время релаксации уменьшается, так как вследствие увеличения интенсивности теплового движения звеньев их перегруппировки происходят чаще. При высоких температурах в области высокоэластического состояния время релаксации звеньев очень мало и в образце практически при любом значении времени действия силы высокоэластическая деформация успевает развиться до значений, близких к равновесному. Поэтому в этой области температур амплитуда деформации также практически не зависит от частоты действия силы.[3, С.150]

АНпл за счет увеличения интенсивности дисперсионных сил, диполь-дипольных взаимодействий и водородных связей [242].[7, С.301]

В кристалле с повышением температуры вследствие увеличения интенсивности колебаний ионов или атомов относительно их положения равновесия расстояния между ними увеличиваются и силы взаимодействия ослабевают. Следовательно, для достижения той же величины деформации при повышенной температуре требуется меньшее усилие. Это означает, что модуль упругости кристалла с повышением температуры уменьшается.[8, С.157]

Такой вывод вытекает из уравнения (36), согласно которому с повышением температуры время релаксации уменьшается, т. е. вследствие увеличения интенсивности теплового движения звеньев их перегруппировки происходят быстрее. Таким образом, изменение температуры должно сказываться" на скорости релаксационных процессов.[8, С.171]

Был предложен механизм процесса образования разветвлений [11, 13] в результате взаимодействия концевых винилиденовых групп с макрорадикалами [116, 117]. Предполагаемый эффект увеличения интенсивности процесса сшивания за счет небольших количеств винилиденовых групп[15, С.177]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
7. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
10. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
11. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
12. Северс Э.Т. Реология полимеров, 1966, 199 с.
13. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
14. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
15. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.

На главную