На главную

Статья по теме: Молекулярной упорядоченности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Степе_нь молекулярной упорядоченности в некристаллическом полимере зависит от температуры. При повышенных температурах (в вязкотекучем состоянии) элементы структуры полимера вследствие ослабления взаимодействия между макромолекулами и увеличения интенсивности теплового движения становятся неустойчивыми образованиями и распадаются. Однако некоторые процессы молекулярной упорядоченности протекают и при высоких температурах, благодаря чему возникают небольшие упорядоченные мик-[2, С.166]

Большинство кристаллизующихся полимеров имеют области, резко отличающиеся по молекулярной упорядоченности, т. е. являются частично-кристаллическими. Если при охлаждении полимера область потери подвижности сегментов характеризуют температурами стеклования (ГССТР, Тсж*), то при нагревании полимера говорят о температуре его размягчения Траш, которая характеризует область (или точку) «размораживания» сегментальной подвижности. Анализ экспериментальных данных, полученных для частично-кристаллических полимеров различными физическими[2, С.55]

Структуру эластомеров можно представить также состоящей из свободных сегментов (тепловое движение которых квазинезависимо) и распределенных по всему объему областей молекулярной упорядоченности в виде микроблоков. Между обеими структурными составляющими наблюдается подвижное равновесие, сдвиг которого происходит при изменении как Т, так и Р. При снижении Т упорядоченность структуры полимера возрастает, причем этот процесс протекает во времени. Если выбрать малое Р, чтобы практически не происходило разрушения сформированной надмолекулярной структуры, то в процессе медленного течения полимера его .надмолекулярная структура должна успевать восстанавливаться.[2, С.168]

Процессы релаксации оказывают существенное влияние на самые разные физические свойства полимеров. При этом различие надмолекулярной организации полимеров наиболее существенно сказывается на характере изменения их вязкоупругих механических свойств. Существование в полимерах надмолекулярных структур разного вида и степени совершенства определяет сложный характер протекания релаксационных процессов, что связано с неоднородностью молекулярной упорядоченности. Процессы молекулярной подвижности в неупорядоченной (аморфной) части полимера характеризуются меньшими временами и более узким релаксационным спектром, тогда как для кристаллической части они затруднены (велико время релаксации и широк спектр). На границе аморфных и кристаллических областей и в местах дефектов структуры соответствующие релаксационные характеристики имеют промежуточное значение.[2, С.138]

Известно, что свойства любого твердого тела определяются строением и взаимным расположением образующих его молекул. В течение ряда лет считали, что все физические свойства полимерных тел полностью определяются строением макромолекул (молекулярной массой, гибкостью цепей). Большая заслуга в объяснении механических свойств полимеров на структурной основе принадлежит советским ученым и в первую очередь академику В. А. Картину, который установил, что одной из важнейших особенностей полимеров является многообразие их надмолекулярных структур. Если термин «строение полимеров» характеризует общие черты молекулярной упорядоченности (определенным образом расположенных друг относительно друга макромолекул), то термин «структура полимеров» характеризует более детальные отличия молекулярной упорядоченности в полимерах.[2, С.18]

Повышение температуры приводит к некоторому увеличению количества ионов, ибо в обычных условиях ионогенные молекулы в полимерах диссоциированы не полностью. В хорошо очищенных полимерах основным источником ионов являются процессы диссоциации с образованием положительно заряженных ионов. Для ряда полимеров, имеющих водородные связи, ионная проводимость может реализоваться и в результате самоионизации молекул. Процессы ориентации и кристаллизации таких полимеров приводят к тому, что водородные связи образуют длинные цепочки, через которые реализуется подвижность положительно заряженных ионов. Для кристаллических полимеров, содержащих малопроницаемые области молекулярной упорядоченности, движение ионов и диффузия примесей происходят по удлиненным путям в местах наибольшей дефектности структуры. В связи с этим увеличение числа дефектов в кристаллических полимерах приводит к росту g и коэффициента диффузии D. Для полимеров, имеющих надмолекулярные структуры, движение ионов в основном происходит через поверхности раздела внутри сферолитов и поверхностные слои на границах сферо-литов.[2, С.201]

Упорядоченность во взаимном расположении полимерных молекул и высокая степень регулярности построения цепи приводят к ухудшению «приспосабливаемое™» макромолекул к поверхности и взаимодействия с нею. В работе [563] была рассмотрена роль гибкости молекулярных цепей каучука в усилении сажей на основе . представлений об изменении конформации цепей при смачивании полимером твердой поверхности. При этом было найдено, что усиление тем более заметно, чем.выше гибкость цепи и чем больше, следовательно, ее контактов с поверхностью может быть реализовано. Проведенные термомеханические исследования свойств наполненных аморфных и кристаллических образцов полистирола также показали, что при введении наполнителя изменения свойств кристаллического полимера менее заметны, чем аморфного того же химического строения. Таким образом, взаимодействие с поверхностью и адгезия зависят не только от химической природы полимера и наполнителя, но и от степени регулярности цепи и молекулярной упорядоченности полимера в надмолекулярных образованиях. Взаимодействие этих образований с поверхностью и их взаимное расположение — весьма важные факторы, определяющие физико-химические и физико-механические свойства наполненного полимера.[7, С.284]

Проявление молекулярной упорядоченности в жидком состоянии подтверждается далее прямым микроскопическим наблюдением расплавов полимеров [11, 16].[9, С.164]

Молекулы, имеющие длинную ось вращения, удобно использовать для изучения молекулярной упорядоченности в лиотропных жидких кристаллах (в том числе полимерных), а[3, С.284]

Дальнейшее уточнение структуры полимеров в B.C. должно быть сделано с учетом молекулярной упорядоченности (см. Надмолекулярные структуры]. В линейных полимерах прп низких темп-pax обнаруживается молекулярная упорядоченность в виде пачек; при их разрушении и с повышением темп-ры образуются менее устойчивые надмолекулярные структуры Последние представляют собой упорядоченные области, размеры к-рых порядка сегмента цепи. Они играют эоль временных узлов пространственной сетки линейных полимеров. Сегменты, не входящие в такие элементы структуры, можно назвать свободными, т. к. их подвгжность значительно больше, чем сегментов, входящих в упорядоченные области. Представления о структуре аморфных полимеров в В. с. как о «смеси» упорядоченных и неупорядоченных микрообластей объясняют многие свойства аморфных полимеров.[10, С.284]

Дальнейшее уточнение структуры полимеров в В. с. должно быть сделано с учетом молекулярной упорядоченности (см. Надмолекулярные структуры). В линейных полимерах при низких темп-рах обнаруживается молекулярная упорядоченность в виде пачек; при их разрушении и с повышением темп-ры образуются менее устойчивые надмолекулярные структуры. Последние нредставляют собой упорядоченные области, размеры к-рых порядка сегмента цепи. Они играют роль временных узлов пространственной сетки линейных полимеров. Сегменты, не входящие в такие элементы структуры, можно назвать свободными, т. к. их подвижность значительно больше, чем сегментов, входящих в упорядоченные области. Представления о структуре аморфных полимеров в B.C. как о «смеси» упорядоченных и неупорядоченных микрообластей объясняют многие свойства аморфных полимеров.[12, С.281]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
5. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
6. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
7. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
8. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
9. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную