На главную

Статья по теме: Свободных сегментов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Структуру эластомеров можно представить также состоящей из свободных сегментов (тепловое движение которых квазинезависимо) и распределенных по всему объему областей молекулярной упорядоченности в виде микроблоков. Между обеими структурными составляющими наблюдается подвижное равновесие, сдвиг которого происходит при изменении как Т, так и Р. При снижении Т упорядоченность структуры полимера возрастает, причем этот процесс протекает во времени. Если выбрать малое Р, чтобы практически не происходило разрушения сформированной надмолекулярной структуры, то в процессе медленного течения полимера его .надмолекулярная структура должна успевать восстанавливаться.[2, С.168]

Схема рис. I. 15 в первом приближении представляет структуру линейных полимеров * как образованную из двух частей, причем одна состоит-из свободных сегментов, тепловое движение которых квазинезависимо, а другая представляет собой распределенную по всему объему молекулярно-упорядоченную структуру в виде микроблоков с относительно болыними, но конечными временами[1, С.55]

Как указывалось выше, механизм быстрой стадии физической релаксации эластомеров можно представить себе как процесс, связанный с подвижностью свободных сегментов. За время протекания быстрой стадии (доли секунды) микроблоки не успеваТот распадаться и ведут себя как целое. Перестройка же надмолекулярной структуры в целом происходит медленно под действием теплового движения и напряжения. Для микроблоков, если их считать кинетическими единицами процесса релаксации и вязкого течения, энергия активации должна быть на два-три порядка выше вследствие- их громоздкости. Поэтому следует предпрдожить, как[1, С.64]

Микроблоки надмолекулярной структуры представляют собой структуры, которые постоянно разрушаются в одних местах и образуются в других. Время их жизни при высоких температурах мало по сравнению со временем наблюдения, но значительно больше, чем время перехода свободных сегментов (не входящих в микроблоки) из одного равновесного положения в другое. Поэтому за достаточно большое время наблюдения структуры расплавов кристаллических полимеров и некристаллических полимеров при высоких температурах воспринимаются в среднем как набор хаотически переплетенных цепей. Следовательно, при определенных условиях опыта, например при изучении термодинамических (равновесных) свойств аморфных полимеров, модель хаотически переплетенных цепей приблизительно верна. Это подтверждается упоминавшимися выше эргодическими принципами, при времени наблюдения t Э» Тг- В плане физической кинетики эта модель, однако, неудовлетворительна.[1, С.56]

Экспериментально наблюдаемые для полимеров медленные релаксационные процессы с временами релаксации 104—105 с (при 293 К) могут быть связаны только с различными микроблоками их надмолекулярных структур. Между числом сегментов, входящих в глобулярные микроблоки (рис. 1.12), и числом свободных сегментов в полимере существует подвижное равновесие, зависящее от р и Т, а также от внешних сил. Наиболее вероятный механизм образования глобулярного микроблока — это посегментальное сверты-[2, С.29]

Как отмечалось в § 4 гл. I, структура некристаллических полимеров (а тем более полимеров с активным наполнителем) состоит из нескольких структурных подсистем, в которых подвижность сегментов различна. В результате кроме основного процесса структурного стеклования наблюдается несколько побочных процессов стеклования. Например, структуру эластомеров в первом приближении можно представить как состоящую из двух частей, причем одна часть состоит из свободных сегментов, тепловое движение которых квазинезависимо, а другая представляет собой распределенную по 'всему объему молекулярно-упорядоченную[1, С.99]

Релаксационные переходы в полимерах проявляются на разных уровнях их молекулярной и надмолекулярной организации. Данные релаксационной спектрометрии для медленных релаксационных процессов показывают, что на непрерывном спектре времен релаксации (см. рис. 5.1) сшитых наполненных эластомеров кроме известных -у- и (3-переходов, связанных с мелкомасштабными движениями боковых групп и малых участков макромолекул, и а-перехо-да, связанного с подвижностью свободных сегментов неупорядоченной части эластомера, наблюдается еще 6—8 переходов, которые большей частью могут быть отнесены к медленным релаксационным процессам. Некоторые из них характерны лишь для неполярных эластомеров. Так, а'-переход, обязан потере подвижности сегментов в жесткой части каучука, адсорбированного на частицах активного наполнителя: Кг, 1г и Яз-переходы объединяют группу из релаксационных процессов (штриховая часть кривой), связанных с временами жизни упорядоченных микрообластей (микроблоков трех типов), ф-переход соответствует подвижности самих частиц наполнителей как узлов сетки полимера, а 6-переход соответствует химической релаксации, связанной с подвижностью химических поперечных связей, наблюдаемой в условиях эксплуатации при длительных временах наблюдения. Предполагается, что каждый максимум на непрерывном спектре соответствует отдельному релаксационному переходу.[2, С.129]

Размеры микроблоков надмолекулярных структур, приведенные в табл. 1.1, подтверждаются опытами, в которых для линейных полимеров метилстирольного каучука СКМС-30 и бутадиен-сти-рольного каучука СКН-26 были исследованы диаграммы растяжения с заданными скоростями деформации (см. табл. 1.2). При тем-* пературах ниже Т0 (т. е. в области стеклообразного состояния) кривые деформации характеризуются наличием предела вынужденной эластичности сгв, что будет рассмотрено в гл. II. Процесс вынужденной эластичности связан с -тем, что время молекулярной релаксации т, характеризующее подвижность свободных сегментов и близкое по величине (но несколько большее) к среднему конформационному времени тк [уравнение (1.23)], снижается при больших напряжениях (порядка 107—108 Па) настолько, что сегменты становятся подвижными и высокоэластическая деформация возможна,[1, С.66]

Линейные размеры всех типов структурных микроблоков значительно меньше, чем контурная длина макромолекул, поэтому одна и та же макромолекула многократно проходит' через различные микроблоки. Между физическими узлами — микроблоками — имеются цепи сетки, которые являются частью макромолекулы. Если учесть, что микроблоки не являются стабильными образованиями и время их жизни уменьшается при повышении температуры, то за время наблюдения эти флуктуационные структуры могут многократно распадаться в одних местах и возникать в других, т. е. «размазываться» по объему полимера. Следовательно, модель упорядоченных областей (структурных микроблоков) является динамической, а для равновесных процессов она переходит в модель хаотически перепутанных цепей. Таким образом, модель сетки полимера, образованной физическими узлами в виде структурных микроблоков, не противоречит статистической теории высокой эластичности. В соответствии с этой моделью быстрая высокоэластическая деформация в эластомерах определяется подвижностью свободных сегментов и изменением конфигураций свободных цепей (между физическими узлами). Медленные физические релаксационные процессы и вязкое течение определяются временами жизни физических узлов сетки эластомера, кинетическая стабильность которых определяется методами релаксационной спектрометрии.[2, С.127]

Высокоэластическая деформация эластомеров при малых Р объясняется ориентацией свободных сегментов, не входящих в упорядоченные микрообласти, так как последние ведут себя подобно[2, С.169]

Структуру гибкоцепных полимеров в некотором приближении можно считать состоящей из двух частей, причем одна часть (неупорядоченная) состоит из свободных сегментов и цепей, не входя-[2, С.126]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
5. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
6. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.

На главную