На главную

Статья по теме: Действием теплового

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Под действием теплового движения цепи непрерывно изменяют свою конформацию. Число цепей, находящихся в контакте с поверхностью, зависит от 5ф. Каждая цепь находится в контакте с поверхностью ограниченное время, а затем совершает перескок в новое место контакта, преодолевая молекулярные силы сцепления с твердой поверхностью. Рассматривая этот случай, по аналогии с тепловыми колебаниями полимерных цепей, можно записать, что[3, С.369]

Разрыв и восстановление временных узлов под действием теплового движения, вероятно, являются одной из основных особенностей вязкого течения линейных и разветвленных полимеров44 и процесса медленной физической релаксации в пространственно-структурированных полимерах*. С другой стороны, механизм[12, С.118]

Рассмотренные выше соотношения дают представление лишь о средних размерах макромолекул. Под действием теплового движения и идеальные и реальные макромолекулы могут совершать непрерывное движение, изменяя свою конформацию и расстояние между концами молекул, т. е. в каждый момент времени определенное количество молекул обладает данным значением h.[21, С.56]

Рассмотренные выше соотношения дают представление лишь о средних размерах макромолекул. Под действием теплового движения и идеальные и реальные макромолекулы могут совершать непрерывное движение, изменяя свою конформацию и расстояние между концами молекул, т. е. в каждый момент времени определенное количество молекул обладает данным значением /г.[24, С.56]

Как известно, время релаксации определяется способностью сегментов макромолекул к перемещению под действием теплового движения. Способность эта существенно различна, как мы видели, для свободных сегментов и для сегментов, входящих в состав узлов флуктуационной сетки. Время оседлой жизни (до перемещения) свободного сегмента составляет 10~~6—10~4 с, а время оседлой жизни сегментов, входящих в состав узлов, составляет 10—104 с. Уже из приведенных данных видно, что для полимера в принципе не может быть одного времени релаксации, а должно быть по крайней мере два времени. Однако понятия «свободный» и «связанный» сегменты являются относительными. Так, свободные сегменты неодинаково свободны, поскольку полимер не является идеально однородным и межмолекулярное взаимодействие сегментов друг с[5, С.139]

Для того чтобы найти распределение макромолекул по длинам, пользуются моделью со свободно сочлененными сегментами. Представим себе макромолекулу в растворе или в блоке полимера. С течением времени она самопроизвольно под действием теплового движения принимает самые различные конформации, которые характеризуются тем или иным расстоянием между концами макромолекулы в том или ином направлении в пространстве, иначе говоря, характеризуются вектором h (см. рис. 4.2).[3, С.97]

Как указывалось выше, механизм быстрой стадии физической релаксации эластомеров можно представить себе как процесс, связанный с подвижностью свободных сегментов. За время протекания быстрой стадии (доли секунды) микроблоки не успеваТот распадаться и ведут себя как целое. Перестройка же надмолекулярной структуры в целом происходит медленно под действием теплового движения и напряжения. Для микроблоков, если их считать кинетическими единицами процесса релаксации и вязкого течения, энергия активации должна быть на два-три порядка выше вследствие- их громоздкости. Поэтому следует предпрдожить, как[2, С.64]

Природа трения полимеров в высокоэластическом состоянии — молекулярно-кинетическая; она связана главным образом с механическими потерями в поверхностном мономолекулярном слое полимера. Механические потери в объемах шероховатостей самого полимера не столь существенны. Молекулярный механизм трения полимеров в высокоэластическом состоянии (состоящих из гибких линейных молекул, связанных в пространственную сетку и находящихся в интенсивном тепловом движении) заключается в следующем. Под действием теплового движения цепи полимера непрерывно изменяют свою конформацию, а те из них, которые выходят на поверхность полимера, могут сцепляться с твердой поверхностью-металла. Участки макромолекул находятся в контакте с твердой поверхностью ограниченное время, а затем совершают перескок в новое место контакта, преодолевая молекулярные силы сцепления с твердой поверхностью. Если тангенциальная сила равна нулю, то> цепи находятся в ненапряженном состоянии и перескоки цепей равновероятны по всем направлениям поверхности. Если тангенциальная сила отлична от нуля, то вероятность перескоков максимальна в направлении тангенциальной силы и минимальна в противоположном направлении. При установившемся скольжении тангенциальная сила равна направленной в противоположную сторону силе трения.[3, С.377]

Конформацией макромолекулы называют пространственное расположение атомов в молекуле, которое может меняться под действием теплового движения оез разрушения химических связей между этими атомами или группами атомов.[5, С.13]

При Т=ТС свободный объем в полимере составляет порядка 2,5% от общего объема полимера. Такой свободный объем мал для беспрепятственного перемещения сегментов макромолекул под действием теплового движения. При нагревании полимера происходит его тепловое расширение, свободный объем увеличивается и сегменты могут легко перемещаться. Полимер приобретает способность к большим обратимым деформациям.[5, С.138]

Измерение динамических характеристик имеет многообразное значение для полимерных систем, Самое важное — это получение на основании таких измерений релаксационного спектра. Различные элементы структуры в полимерных системах под действием теплового движения самопроизвольно перестраиваются за разные времена, т. е. различной частотой. Следовательно, существует набор частот v (и величин, обратных им, — времен релаксации), который определяет способность всех элементов структур к л ере-стройке. Некоторые из этих частот (или времен релаксации) встречаются чаще, другие реже. Интенсивность проявления той или иной частоты (или времени релаксации) по отношению к другим частотам представляется функцией их распределения. Она определяет релаксационный спектр полимерной системы. Этот спектр может быть определен как для частот перестройки структуру, так и для времен релаксации.[6, С.263]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
5. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
8. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
9. Бартенев Г.М. Физика полимеров, 1990, 433 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
13. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
14. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
15. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
16. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
17. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
18. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
19. Виноградов Г.В. Реология полимеров, 1977, 440 с.
20. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
21. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
22. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
23. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
24. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
25. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
26. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную