На главную

Статья по теме: Разветвленных полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

От разветвленных полимеров легко перейти к трехмерным "сшитым" полимерам. Для этого достаточно увеличить содержание многофункциональных соединений в цепи полимера. Цепи можно сшить также специальными отвер-дителями, т.е. соединениями, содержащими активные группы, способные ре-[8, С.25]

Свойства разветвленных полимеров зависят от длины боковых ответвлений, частоты их расположения в цепи и от химического строения звеньев, составляющих основные и боковые цепи. Частое расположение боковых ответвлений препятствует сближению макромолекул друг с другом. Вследствие этого уменьшаются силы межмолекулярного взаимодействия, что приводит к увеличению[4, С.35]

Свойства разветвленных полимеров зависят от длины разветвлений, частоты их расположения и от химического строения звеньев основных и боковых цепей. Большое скопление боковых цепей, находящихся вблизи друг от друт а, препятствует сближению макромолекул и снижает межмолекулярное притяжение, в результате чего увеличиваются хладотекучесть и пластичность полимеров. При редком расположении боковых ответвлений гибкость полимерных цепей почти такая же, как у линейных макромолекул. В случае статистического распределения разветвлений способность полимеров к кристаллизации понижена или вовсе отсутствует.[19, С.619]

Прочность разветвленных полимеров и свойства их растворов зависят от степени и типа разветвления. Полимеры с относительно небольшим числом боковых цепей очень близки по свойствам к линейным полимерам. Сильноразветвленные полимеры вследствие значительно меньшей степени асимметрии молекул по свойствам приближаются к низкомолекулярным соединениям.[6, С.48]

Задача. На основе разветвленных полимеров получить волокна с удовлетворительным комплексом механических свойств не удается. Однако добавка разветвленных полимеров, синтезированных прививкой одного полимера на другой, уменьшает структурную неоднородность изделий из смесей двух волокно-образующих полимеров, природа которых идентична основной и привитым цепям. Волокна, получаемые из смесей таких несовместимых полимеров в присутствии привитых сополимеров, обладают высокими механическими показателями. Примером могут служить волокна на основе смесей вторичного аце-[2, С.16]

Большинство линейных и разветвленных полимеров способно кристаллизоваться. К ним относятся, например, политетрафторэтилен, полиформальдегид, полиамиды, полполефииы, поливинил-хлорид, изотактический полистирол, каучук, шерсть и др. При кристаллизации полимеров возрастают плотность, модуль упругости ?, предел кратковременной прочности ов и уменьшается величина предельной деформации ев.[3, С.50]

Таким образом, для линейных и разветвленных полимеров понятие «макромолекула» отличается от общепринятого классического понятия «молекула» лишь тем, что в макромолекуле связаны химическими связями сотни и тысячи атомов, а не единицы или десятки атомов, как в низкомолекулярных соединениях. В приложении к пространственным полимерам понятие «молекула» становится очень условным и неопределенным.[6, С.30]

Для случая т = 0 существует ряд разветвленных полимеров, свойства которых изучены экспериментально. Так, например, при га = 0 и и = 0 получаем полипропилен, для которого расчетная величина Tg составляет 277 К, а экспериментальная 263 К. При т = 0 и п = 1 имеем полибутен-1, для которого расчетная величина Tg составляет 258 К, а экспериментальная 248 К. Такая же сходимость, характерная для данного метода, наблюдается и для других полимеров при /и = 0ил = 2и6.[8, С.146]

Передача цепи через полимер с образованием разветвленных полимеров наблюдается при полимеризации многих мономеров на глубоких стадиях превращения. Эту реакцию используют для получения привитых сополимеров (см. с. 206).[6, С.72]

В случае образования растворимых линейных или разветвленных полимеров дополнительные сведения о механизме протекающих реакций могут быть получены на основании определений среднего молекулярного веса полимера и построения кривой распределения по молекулярному весу. Механизм и кинетику образования полимеров пространственной структуры более достоверно удается исследовать в начальных стадиях процесса, когда продукты реакции еще растворимы. На основании этих исследований делают предположения о возможных направлениях дальнейшего процесса образования полимера и о наиболее вероятном строении звеньев его макромолекул.[4, С.88]

Сетчатые полимеры резко отличаются по свойствам от линейных и разветвленных полимеров. Они не плавятся без разложения и не могут быть переведены в раствор, они только набухают в растворителях. Это связано с тем, что в сетчатых полимерах преобладают прочные химические связи между макромолекулами. Физические и физико-механические свойства этих полимеров зависят от числа межмолекулярных химических связей и от регулярности их расположения. С увеличением числа межмолекулярных связей твердость вещества увеличивается, повышается модуль упругости и уменьшается относительная деформация, т. е. свойства сетчатого (пространственного) полимера приближаются к свойствам кристалла (примером кристаллического полимера с правильной пространственной решеткой является алмаз).[6, С.48]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
4. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
7. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
8. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
9. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
10. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
11. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
12. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
13. Бартенев Г.М. Физика полимеров, 1990, 433 с.
14. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
15. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
16. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
17. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
18. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
19. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
20. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
21. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
22. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
23. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
24. Северс Э.Т. Реология полимеров, 1966, 199 с.
25. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
26. Виноградов Г.В. Реология полимеров, 1977, 440 с.
27. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
28. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
29. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
30. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
31. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
32. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
33. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
34. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
35. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
36. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
37. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
38. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
39. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
40. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
41. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
42. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
43. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
44. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
45. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
46. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
47. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную