На главную

Статья по теме: Перемещения сегментов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Развитие деформации цепной молекулы происходит путем последовательного перемещения сегментов из одного положения в другое, т. е. протекает во времени. Поэтому высокоэластическая деформация отстает от изменения внешнего напряжения. Процесс перегруппировок сегментов сопровождается преодолением внутреннего трения в полимерах и, следовательно, рассеянием механической энергии.[6, С.73]

С увеличением жесткости и полярности полимерных макромолекул возрастает время перемещения сегментов, а это значит, что затвердевание будет происходить при более высоких температурах. Полимер в стеклообразном состоянии отличается от того же полимера в высокоэластическом состоянии подвижностью элементов структур макромолекул, т. е. временами релаксации: для макромолекул, сегментов и надмолекулярных образований в стеклообразном состоянии они очень велики и часто превышают время испытания или эксплуатации полимеров. Последнее подтверждается тем фактом, что значение температуры стеклования зависит от времени выдержки образца полимера в процессе физического или механического воздействия.[7, С.108]

С увеличением жесткости и полярности полимерных макромолекул возрастает время перемещения сегментов, а это значит, что затвердевание будет происходить при более высоких температурах. Полимер в стеклообразном состоянии отличается от того же полимера в высокоэластическом состоянии подвижностью элементов структур макромолекул, т. е. временами релаксации: для макромолекул, сегментов и надмолекулярных образований в стеклообразном состоянии они очень велики и часто превышают время испытания или эксплуатации полимеров. Последнее подтверждается тем фактом, что значение температуры стеклования зависит от времени выдержки образца полимера в процессе физического или механического воздействия.[8, С.108]

Итак, при охлаждении полимеров до Т — ТС свободный объем становится недостаточным для теплового перемещения сегментов. Это проявляется в потере полимером эластичности или способности к самопроизвольному сокращению после деформации. Однако сегменты сохраняют способность к перемещению под действием внешней силы без разрушения полимера. Наблюдающаяся при[3, С.155]

Выше температуры Тт полимер течет, находясь в вязкотекучем состоянии, в котором молекулы путем последовательного перемещения сегментов передвигаются друг относительно друга. Эта область соответствует развитию необратимых деформаций. Величина температуры течения Тт, определенная по термомеханической кривой, не всегда имеет точное значение, так как часто увеличение температуры может способствовать развитию больших обратимых деформаций. Для установления точной температуры течения необходимо убедиться, что происходящая при этой температуре деформация является необратимой.[7, С.74]

Выше температуры Гт полимер течет, находясь в вязкотекучем состоянии, в котором молекулы путем последовательного перемещения сегментов передвигаются друг относительно друга. Эта область соответствует развитию необратимых деформаций. Величина температуры течения Тт, определенная по термомеханической кривой, не всегда имеет точное значение, так как часто увеличение температуры может способствовать развитию больших обратимых деформаций. Для установления точной температуры течения необходимо убедиться, что происходящая при этой температуре деформация является необратимой.[8, С.74]

Ориентация и кристаллизация макромолекул и их частей приводит к потере полимером высокоэластичности, поскольку затрудняются перемещения сегментов и возрастает время релаксации, что сопровождается увеличением вязкости. Частично закристаллизованный в процессе растяжения эластомер далее деформируется уже незначительно.[7, С.122]

Ориентация и копеталлпзанпя макромолекул и их частей приводит к потере полимером высокоэластнчностп, поскольку затрудняются перемещения сегментов и возрастает время релаксации, что сопровождается увеличением вязкости. Частично закристаллизованный в процессе растяжения эластомер далее деформируется уже незначительно.[8, С.122]

При Т=ТС свободный объем в полимере составляет порядка 2,5% от общего объема полимера. Такой свободный объем мал для беспрепятственного перемещения сегментов макромолекул под действием теплового движения. При нагревании полимера происходит его тепловое расширение, свободный объем увеличивается и сегменты могут легко перемещаться. Полимер приобретает способность к большим обратимым деформациям.[3, С.138]

Особенность течения в полимерах состоит в том, что в них длинные гибкие цепные молекулы не могут перемещаться как единое целое. Как упругая высокоэластическая деформация, так и деформация вязкого течения осуществляется путем последовательного перемещения сегментов макромолекул. Это значит, что макромолекула, являющаяся совокупностью сегментов 345678 (рис. 11.6), при наличии «дырки» в положении 2 может деформироваться так, что сегмент 3 перейдет в положение 2. Далее при наличии дырок по соседству с сегментами 7 или 8 произойдет их перемещение; на освободившееся место перейдут сегменты 5 или 6 и т. д., что приведет к смещению (вязкому течению) всей макромолекулы.[3, С.162]

Особенность течения в полимерах состоит в том, что в них длинные гибкие цепные молекулы не могут 'перемещаться как единое целое. Как упругая высокоэластическая деформация, так и деформация вязкого течения осуществляется путем последовательного перемещения сегментов макромолекул. Напомним, что сегмент — это часть гмолекулы, которая перемещается как единое целое в элементарном акте теплового движения. Это значит, что макромолекула, являющаяся совокупностью сегментов 345678 (рис. 67) при наличии «дырки» в положении 2 может деформироваться так, что сегмент 3 перейдет в положение 2. Далее при наличии дырок по соседству с сегментами 7 или 8 произойдет их перемещение; на освободившееся место перейдут сегменты 5 или 6 и т. д., что приведет к смещению (вязкому течению) всей макромолекулы.[7, С.131]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
6. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
7. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
8. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную