На главную

Статья по теме: Увеличением жесткости

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

С увеличением жесткости цепей различия механических свойств также незначительны, ибо жесткие цепи стремятся к образованию мезофаз, которые уже нельзя считать аморфными.[3, С.348]

С увеличением жесткости и полярности полимерных макромолекул возрастает время перемещения сегментов, а это значит, что затвердевание будет происходить при более высоких температурах. Полимер в стеклообразном состоянии отличается от того же полимера в высокоэластическом состоянии подвижностью элементов структур макромолекул, т. е. временами релаксации: для макромолекул, сегментов и надмолекулярных образований в стеклообразном состоянии они очень велики и часто превышают время испытания или эксплуатации полимеров. Последнее подтверждается тем фактом, что значение температуры стеклования зависит от времени выдержки образца полимера в процессе физического или механического воздействия.[14, С.108]

С увеличением жесткости и полярности полимерных макромолекул возрастает время перемещения сегментов, а это значит, что затвердевание будет происходить при более высоких температурах. Полимер в стеклообразном состоянии отличается от того же полимера в высокоэластическом состоянии подвижностью элементов структур макромолекул, т. е. временами релаксации: для макромолекул, сегментов и надмолекулярных образований в стеклообразном состоянии они очень велики и часто превышают время испытания или эксплуатации полимеров. Последнее подтверждается тем фактом, что значение температуры стеклования зависит от времени выдержки образца полимера в процессе физического или механического воздействия.[18, С.108]

Если учесть, что прочность химической связи -С-С- составляет 260-350 кДж/моль, то очевидно, что с увеличением жесткости макромолекул (рис. 4.15) возрастание АЕр может привести к термическому распаду полимерных цепей при достаточно высоких температурах. Действительно, триацетат целлюлозы может[1, С.190]

Приведенные закономерности находятся в полном согласии с изложенными выше объяснениями. С увеличением содержания фе- ' нилышх остатков в сополимере цець становится жестче, а более жесткие цепи при Отсутствии сильнонолярных i групп менее плотно упако- ' вываются Поэтому с увеличением жесткости цепи на-блюдается закономерное уменьшение Д5, вследствие образования рыхлой структуры, и энтропия низкомолекулярного компонента в растворе становится меньше, чем в фазе самого компонента, т. е. Д6'а<0.[4, С.371]

Образование трещин и потеря герметичности наблюдаются и после механического нагружения армированных материалов. Напряжение, при котором появляется такая система трещин, зависит от свойств связующего и для эпоксидных стеклотекстоли-тов на основе ткани сатинового переплетения может составлять от 10 до 80—85% от разрушающей нагрузки, причем эта величина сильно зависит от предельного удлинения связующего. Вероятно, для пластиков, работающих под давлением жидкости или газа, для характеристики механических свойств следует ввести понятие «предел растрескивания», т. е. напряжение, при котором в пластике образуется сетка мнкротрещин. Отношение этой величины к разрушаюшему напряжению может характеризовать степень напряженности матрицы в материале. Склонность к растрескиванию возрастает с увеличением жесткости полимера и содержания наполнителя. Поэтому для получения пластиков электроизоляционного назначения, в которых механи-[5, С.216]

Данные, полученные для наполнителей с различной поверхностной энергией, свидетельствуют о малой зависимости изменения, подвижности боковых групп и сегментов от природы поверхности наполнителя. Отсюда следует важный вывод о том, что в изменении подвижности основную роль играет геометрическое ограничение числа возможных конформаций макромолекул вблизи поверхности частиц, т. е. энтропийный фактор. Эти ограничения препятствуют такой плотной упаковке молекул, которая могла бы иметь место в объеме. Подтверждением сформулированному положению могут служить результаты исследования молекулярной подвижности в граничных слоях жесткоцепного полимера — ацетата целлюлозы. На рис. III. 24 представлены зависимости tg6 от температуры для ацетата целлюлозы в объеме и на поверхностях модифицированного и немодифицированного аэросила. Как видно, в случае жесткоцепного полимера эффекты изменения подвижности вблизи границы отсутствуют. Действительно, конформационный набор молекул жесткоцепного полимера, который весьма ограничен по сравнению с гибкоцепным полимером, не может столь же сильно изменяться вблизи границы раздела, как в случае гибких молекул, и эффект изменения подвижности цепей не проявляется. Аналогичные результаты были получены для поверхностных слоев акри-латно-эпоксидно-стирольных композиций, где с увеличением жесткости цепей эффекты влияния поверхности уменьшались [226].[10, С.126]

Результаты измерений показывают, что с увеличением жесткости цепи возрастают как средние размеры молекулярного клубка, так и асимметрия его формы.[7, С.557]

Повышение любым способом когезионной прочности материала всегда связано с увеличением жесткости, плавления температуры и стеклования температуры, уменьшением набухаемости и растворимости полимеров. И наоборот, ослабление К. влечет за собой увеличение эластичности или пластичности полимерного материала; при этом падает его механич. прочность, возрастает способность к набуханию и растворимость.[17, С.525]

Повышение любым способом когезионной прочности материала всегда связано с увеличением жесткости, плавления температуры и стеклования температуры, уменьшением набухаемости и растворимости полимеров. И наоборот, ослабление К. влечет за собой увеличение эластичности или пластичности полимерного материала; при этом падает его механич. прочность, возрастает способность к набуханию и растворимость.[20, С.522]

Кожа непосредственно после хромового дубления показывает снижение усадочных напряжений на 40% (кривая в) по отношению к необработанному материалу, что связано, главным образом, с увеличением жесткости структуры — повышением механического сопротивления[11, С.368]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
6. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
7. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
8. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
9. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
10. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
11. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
12. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
13. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
14. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
15. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
19. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
20. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
21. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
22. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
23. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную