На главную

Статья по теме: Содержания наполнителя

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Влияние содержания наполнителя на величину модуля адекватно описывается формулами (8) и (10). Более тонкий эффект повышения Wf/Ws при введении алюминиевого наполнителя объяснить не очень просто. После двух температурных циклов обработки, не приводящих к разрушению материала, образец можно подвергнуть дальнейшему испытанию для определения предела прочности оь, разрывных деформаций вь и ударной вязкости (W/V)b, которая характеризует работу образования трещины в единице объема исследуемого образца. На рис. 11 приведены типичные диаграммы растяжения для отвержденных образцов НТ435 и НТ424. Более высокие значения предела прочности и ударной вязкости образца НТ424 могут быть объяснены присутствием алюминиевого наполнителя. Согласно данным работы [14], сдвиговая прочность (измеренная по методу МММ-А-132 тип II) адгезива при слое толщиной 1,6 мм составляла при 23 °С для образца НТ424 аь ях 246 кг/см2 и для НТ435 <зь ^ 162 кг/см2. Их отношение находится в хорошем согласии с соотношением работы разрушения рассматриваемых адгезивов (рис. 11)[27, С.94]

Стойкость к набуханию в жидкостях зависит от типа полисилоксана и от содержания наполнителя. Обычные силокса-новые вулканизаты, как правило, сильно набухают в неполярных жидкостях и слабо в полярных, а бензомаслостойкие (фтор- и нитрилсилоксановые)—наоборот [3, с. 154—156; 33; 72, с. 176]. Меньше набухают твердые (более наполненные) вулканизаты. Набухание увеличивается с повышением температуры и сопровождается ухудшением механических показателей, не всегда обратимым, так как некоторые жидкости разрушают сетку вулканизата. Примерами жидкостей, в которых обычные вулканизаты набухают на 100—275%, а бензомаслостойкие на 5—30%, являются ССЦ, хлороформ, толуол, ксилол, циклогексан, фреон-114, керосин, силиконовые масла. В ацетоне, наоборот, первые набухают на 15—25%, вторые на 150—200%. Фторсилоксановые резины разрушаются фреоном-22 и этаноламином. Оба типа вулканизатов стойки к водным растворам солей, кислот и оснований, слабо (на 5—25%) набухают в спиртах, ацетонитриле, ледяной уксусной кислоте, средне (на 40—50%) в дихлорэтане и дибутилфталате, сильно (больше 150%) в бутилацетате.[1, С.495]

Экспериментальные данные показали, что при одном и том же значения gilgz значение Д52> уд увеличивается с ростом содержания наполнителя в полимере, т. е. парциальная удельная энтропия полимера возрастает. Казалось бы, что из-за ограничения подвижности полимерных цепей при введении наполнителя сорбция и энтропия системы должны были бы уменьшаться, однако при увеличении содержания наполнителя происходит увеличение рыхлости упаковки молекул, что приводит к росту и сорбции, и энтропии (при более рыхлой упаковке число вариантов расположения молекул больше). Надо иметь в виду, что вычисления энтропии полимера проведены для очень больших массовых долей полимера. В этом случае подвижность цепей не является главным фактором, определяющим сорбцию при смешении полимера и растворителя в области высоких относительных давлений паров, и решающее влияние на сорбцию оказывает плотность упаковки. Таким образом, вычисленные значения изменения парциальной энтропии полимера при разных содержаниях наполнителя могут служить для количественной оценки плотности упаковки наполненных полимеров.[20, С.27]

При механическом диспергировании наполнителей чаще всего наблюдается статистическое распределение их в полимере. При этом зависимость уде |ьною сопротивления материала от содержания наполнителя ф„ описывается сложной кривой, имеющей три участк • первый характеризуется постоянным значением сопротивления, которое определяется свойствами полимерной среды, на втором происходит заметное снижение сопро тивления с ростом количества наполнителя, третий характеризуется очень слабой зависимостью ру от ср„. Первый перегиб соответствует концентрации наполнителя, при которой начинает образовываться его непрерывная цепная структура, второй — моменту, когда формирование этой структуры завершено Зависимость ру = Н<Рн) на втором участке может быть выражена со отношением[4, С.387]

В заключение отметим, что введение в полимер мелкодисперсного инертного наполнителя приводит в основном к вертикальному сдвигу кривых податливости без нарушения их подобия. На рис. 2.15, а приведены обобщенные (по температуре) кривые податливости непластифицированных композиций ПВХ, наполненного мелкодисперсным мелом. Видно, что по мере снижения процентного содержания наполнителя Кв (%) закономерно растет податливость, пропорционально некоторой величине Вк, зависящей от Кп (%). Аналогичный характер изменения вязкоуп-ругой податливости в высокоэластическом состоянии материала обнаружен и при параллельном введении пластификатора ДБФ. Таким образом, обобщенные кривые податливости полимеров, наполненных инертным мелкодисперсным наполнителем, в определенных пределах концентрации наполнителя и пластификатора можно аппроксимировать соотношением[2, С.78]

Электрическая проводимость существ нно зависит от сосга ва полимерной композиция, наипиуер от на, ичия наполнителей и пластификаторов Напочиеиие иочнморон ллекгронроводящи-ми наполнить; ячя, такими, ак графит, технический углерод, мет , лические порошки к др . повышает электрическую проводимость диэлектриков. Электропроводимость наполненных диэлектриков завис и'] см содержания наполнителя, размера его частиц и фн*н:;о химических свойств его поверхности, распределения о.юлнителя в полимере. Пластификаторы уменьшают вероятность контакта наполнитель — наполнитель и тем самым снижают электрическую проводимость наполненных полимеров[4, С.371]

При повышенных температурах прочностные свойства резин падают из-за резкого уменьшения межмолекулярного взаимодействия. В процессе испытания на разрыв при 100 °С резины, вулканизованные гексаметилендиаминкарбаматом, уменьшают свою прочность более, чем в 2 раза (с 13,4 МПа до 5,2 МПа), а при 150 °С сохраняют '/з своей первоначальной прочности (3,6—4,0 МПа). Дальнейшее повышение температуры выше 150°С мало меняет сопротивление разрыву вследствие теплостойкости резин и незначительных происходящих в ней структурных изменений. Повышение содержания наполнителя, до 30—35ч. (масс.), несколько улучшает температуростойкость резин.[1, С.519]

Свойства полимерных материалов можно регулировать, изменяя их состав. Наибольшее влияние на механические свойства оказывают пластификаторы, наполнители, армирующие материалы Введение пластификаторов способствует снижению температуры стеклования полимера (что расширяет температурную область эксплуатации полимерных материалов), но снижает модуль упругости и прочность, увеличивает долю пластических деформаций н текучесть в вязкотекучем состоянии. Влияние наполнителей на прочность полимеров неоднозначно. С одной стороны, введение твердых частиц в полимерную матрицу создает на границе раздела полимер — наполнитель дополнительные перенапряжения (дефектные зоны), которые снижают прочность. Уровень дефектности определяется прочностью связи полимер — наполнитель. С другой стороны, наполнитель изменяет структуру: в наполненных материалах увеличивается доля слабых адсорбционных связей и повышается ориентация макромолекул в направлении действия нагрузки, что способствует росту прочности. В стеклообразном состоянии наполнители снижают прочность, в высокоэластическом —• проявляется их упрочняющая роль; в последнем случае зависимость прочности от содержания наполнителя описывается немонотонной кривой с максимумом при оптимальной концентрации фсгт, которая определяется структурой полимера (в основном гибкостью) к физико-химическими свойствами наполнителя (размером частиц, свойствами их поверхности). Чем ниже гибкость полимера к больше активность наполнителя (например, меньше размер частиц), тем меньше фонт- Снижение прочности при концентрациях наполнителя, превышающих оптимальную, обусловлено уменьшением ориентирующего влияния наполнителя. Это объясняет тот факт, что кристаллизующиеся полимеры или сильно сшитые резины (эбониты) не упрочняются при наполнении.[4, С.348]

Определяют четыре основных параметра системы: средний размер частиц распределяемой фазы, его дисперсию, дисперсию объемного содержания наполнителя по объему смеси, долю площади, занятой частицами диспергируемой фазы. Для определения первых двух параметров необходимо располагать информацией о реальных размерах частиц диспергируемой фазы и характере их распределения по объему оцениваемой партии смеси.[6, С.472]

Смеси на основе ХСПЭ удовлетворительно формуются три прессовании, шприцевании, калаядровании, литье под давлением [3, 4, 89, '95, 108, 109]. Вследствие повышенной вязкости смесей: перед шприцеванием и калалдрованием их следует разогревать. Смеси на основе ХСПЭ независимо от содержания наполнителя^ даже три 'высокой скорости шприцевания незначительно разбухают, сохраняют заданный профиль и хорошее качество поверхности. Каландрованием -получают покрытия, тонкие пленки, промазанные и прорезиненные ткаяи. Для литья подходят смеси с вязкостью по Муни порядка 30 ед. Вулканизацию смесей на основе ХСПЭ проводят при 130—160 ЯС. Более высоких температур следует избегать, так как они могут привести к пористости и изъянам поверхности. Вулканизацию осуществляют в прессе горячим воздухом. При вулканизации тонких пленок возможно применение острого пара <['2]. ХСПЭ характеризуется широким илато вулканизации, а смеси на его основе не боятся перевулканизации.[10, С.148]

В табл. 8.2 приведены данные о механических свойствах промышленных эпоксидных связующих, применяемых в СССР. Как видно из этой таблицы, их характеристики значительно ниже приведенных в табл. 8.1, что приводит к неполному использованию прочности волокна и необходимости снижения содержания наполнителя. В табл. 8.3 даны характеристики некоторых новых высокопрочных эпоксидных связующих, свойства которых уже в большей степени приближаются к свойст-[11, С.212]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Бартенев Г.М. Физика полимеров, 1990, 433 с.
8. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
9. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
10. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
11. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
12. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
13. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
14. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
15. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
16. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
17. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
18. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
19. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
20. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
21. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
22. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
23. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
24. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
25. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
26. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
27. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
28. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
29. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
30. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
31. Бажант В.N. Силивоны, 1950, 710 с.
32. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
33. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
34. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
35. Седлис В.И. Эфиры целлюлозы и пластические массы, 1958, 116 с.

На главную