На главную

Статья по теме: Наполненных полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В практике получения наполненных полимеров и покрытий часто используются смеси нескольких полимеров или олигомеров, в связи с чем исследование адсорбции смесей полимеров является актуальной задачей. Между тем, в этом направлении сделано очень мало. Очевидно, при исследовании смесей полимеров возникают трудности, связанные с определением изменения концентрации индивидуальных полимеров, использованных в смесях.[15, С.73]

Вид функции цч(Р) выражается уравнением T) = Tioexp( — аР) для линейных ненаполненных и уравнением т\ = сР-т для наполненных полимеров.[4, С.153]

При создании полимерных материалов с заданным химическим строением и физической структурой особое значение имеет получение армированных пластиков и наполненных полимеров, в которых процессы полимеризации и одновременно структурообразования протекают в присутствии сильно развитой поверхности волокнистого или дисперсного наполнителя. Влияние малых количеств наполнителей, служащих центрами структурообразования в кристаллических полимерах, на процессы кристаллизации исследовано в работе [245].[15, С.175]

Гст, увеличению возможного числа конформаций макромолекул и, как следствие этого, к повышению уровня гомологических температур. Все это влияет на вязкоупругие свойства наполненных полимеров и приводит к ускорению релаксационных процессов. Поэтому так же, как и при введении влаги в материал, становится возможным построение обобщенных кривых деформируемости методом концентрациопно-временной аналогии, где фактором, облегчающим ускорение релаксационных процессов, является концентрация пластификатора. В определенных интервалах объемного процентного содержания пластификатора С (%) и времени упреждения обобщенные кривые, построенные методом коицентрационно-временной аналогии, могут быть использованы[2, С.75]

Введение наполнителей, которые, как было сказано выше, влияют на теплоемкость и теплопроводЕюсть, изменяет и коэффициент температуропроводности Существует эмпирическая зависимость а наполненных полимеров от содержания и типа наполнителя (технического углерода).[5, С.364]

Таким образом, термодинамические исследования указывают на значительные различия в структуре и свойствах поверхностных слоев. Аналогичные результаты были получены впоследствии во многих работах. Подробно термодинамика набухания и сорбции наполненных полимеров описаны в монографии [18].[15, С.163]

Для выяснения влияния рассмотренных факторов мы исследовали адсорбцию ряда полимеров различного химического строения с использованием в качестве адсорбента стеклянного волокна—одного из наиболее важных наполнителей, применяемых в промышленности армированных пластиков и наполненных полимеров. В качестве объектов были взяты полиметилметакрилат, полистирол, полиме-такриловая кислота, сополимеры метакриловой кислоты со стиролом и желатина в различных по своему термодинамическому качеству растворителях.[15, С.141]

Ограничение молекулярной подвижности вследствие адсорбционного взаимодействия ведет к существенным изменениям свойств поверхностных слоев полимеров. Они проявляются в плотности упаковки молекул в поверхностных слоях, в температурах стеклования и релаксационном поведении наполненных полимеров, а также в характере образующихся на поверхности надмолекулярных структур.[15, С.162]

Слой полимера около поверхности раздела фаз, так называв мый граничный слой, отличается по своим свойствам и струк туре от основной массы полимера [1, 3, 4, 26]. Вопрос о при роде и толщине этого слоя представляет большой интерес и является одной из основных проблем теории наполненных полимеров. Именно через этот слой происходит передача механической нагрузки, а, следовательно, зависят механические свойства и сплошность наполненных материалов.[10, С.88]

Однако до сих пор еще мало исследованы процессы структурообразования при полимеризации в присутствии наполнителей, т. е. одновременное влияние поверхности раздела на протекание процессов полимеризации и структурообразования. Между тем эта проблема особенно важна при получении армированных и наполненных полимеров, где процессы полимеризации и структурообразования протекают на границе раздела с твердой поверхностью. В ряде проведенных нами исследований [23, 240, 259] было изучено влияние твердой поверхности на процессы структурообразования при формировании полимерного материала из раствора или расплава и показано, что поверхность наполнителя оказывает существенное влияние на протекание этих процессов и свойства полимеров в граничных слоях.[15, С.175]

Граничный слой характеризуется эффективной толщиной, за пределами которой отклонение его свойств от свойств материала в объеме мало [4]. Из самого определения этой величины следует, что она зависит от метода определения. Кроме того, толщина граничного слоя обычно определяется не непосредственно, а из измерения показателей макроскопических свойств наполненных полимеров — релаксационных характеристик, плотности [27—29], термического коэффициента объемного расширения [30, 6, 59], сорбционных характеристик [27, 29, 31, 32].[10, С.88]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
7. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Бартенев Г.М. Физика полимеров, 1990, 433 с.
10. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
11. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
12. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
13. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
14. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
15. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
16. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
17. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
18. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
19. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
20. Семенович Г.М. справочник по физической химии полимеров том 3, 1985, 592 с.
21. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
22. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
23. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
24. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную