На главную

Статья по теме: Надмолекулярных образований

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для оценки надмолекулярных образований меньшего размера используют электронную микроскопию Просвечивающая электронная, микроскопия (ПЭМ) в принципе аналогична световой, но вместо светового пучка используют пучок электронов Длина волны пучка электронов л зависит от напряжения V Я. (1,5/^) ' Для ускорении электронов применяют высокое напряжение (50—100 кВ и даже 1 МБ); электронный пучок фокусируется с помощью электростатических электромагнитных полей Изображение формируется с помощью дополнительных электростатических или электромагнитных лннз и наблюдается на флуоресцентном экране или фотопластинке. Съемку проводят при глубоком вакууме (~10 5 мм рт ст.), показатель преломления пгр в этих условиях равен !. С повышением напряжения снижается длина волны пучка электронов н следовательно, растет разрешающая способность микроскопа. Наилучшее разрешение у промышленных приборов составляет 0,2—05 ня, а увеличение 103—!05 раз. Возникновение контраста на электронно микроскопических снимках обусловлено различной рассеивающей способностью идер разных атомов по отношению к электронному лучку. Поэтому полимеры, состоящие из легких идер часто дают неотчетливые снимки Для повышения контрастности их обрабатывают тяжелыми металлами, такими, как палладий, золото, хром, платина, осмий и др. Образцы для ПЭМ готовят в виде тонких («0,1 мкм) пленок, тонких срезов или так называемых «реплик», т е. отпечатков поверхностей сколов образцов^ Этот метод используют для изучения морфологии кристаллов н аморфных полимеров. К числу недостатков ПЭМ следует отнести сложность приготовления образцов н возможность ошибок (^артефактов») в определении структуры[10, С.86]

Связь формы и размеров молекулярных и надмолекулярных образований с комплексом механических свойств полиэфирного волокна является несомненной. Но эта зависимость изучена недостаточно, как не изучены условия возникновения этих структур в процессе горячего вытягивания. Несомненно, большое значение в образовании структуры имеют условия плавления, формования и вытягивания. По данным Петухова [46], одним из путей создания мелкокристаллической и малонапряженной структуры является повышение молекулярной массы полиэтилентерефталата.[9, С.134]

Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях: в виде определенного рода упорядоченностей и морфологически обусловленных неоднородносгей в аморфном полимере; в виде кристаллических образований; и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пически.х размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации.[1, С.42]

В последнее время стал актуальным вопрос: какую роль в термодинамике и статистике равновесной высокоэластической деформации играет надмолекулярная организация? Для ответа на него необходимо напомнить, что в некристаллических эластомерах микроблоки упорядоченной структуры имеют флуктуационное происхождение и, следовательно, характеризуются определенным, конечным временем жизни (см. гл.'I). Так, для каучуков и резин время жизни надмолекулярных образований при 20 °С обычно заключено в интервале 102—104 с, а при повышенных температурах становится намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того, чтобы судить о 'достижении системой равновесного состояния, время наблюдения за свойствами эластомера должно превышать время жизни упорядоченных микроблоков. По этой причине для описания свойств равновесного состояния оказывается пригодной модель хаотически переплетенных цепей без прямого учета надмолекулярных структур флуктуационной природы. В то же время, при изучении равновесных состояний частично закристаллизованных эластомеров следует учитывать надмолекулярные структуры, так как в этом случае кристаллические упорядоченные микрообласти суть термодинамически стабильные структуры. Аналогично, существенен учет в наполненных резинах других стабильных структурных единиц — частиц активного наполнителя. В этой главе в соответствии с произведенной «отбраковкой» в основном рассматриваются термодинамические свойства ненаполненных и незакристаллизованных эластомеров, так как природа высокоэластической деформации более сложных структур остается той же, но расчет высокоэластических напряжений сильно усложняется.[4, С.106]

В то же время следует иметь в виду, что такое рассмотрение является первым приближением. Исследование структуры полимеров показало, что не только в кристаллическом, но и в аморфном состоянии почти всегда образуются отчетливо выраженные упорядоченные надмолекулярные структуры. Полимерные тела являются четко выраженными гетерогенными (неоднородными) системами. В них имеются границы раздела между структурными образованиями, которые могут являться зародышем трещин. При деформировании полимера возникают процессы, связанные со взаимным перемещением крупных структурных элементов, превращением в другие типы надмолекулярных образований и их •разрушением. В одном и том же объеме полимера одновременно могут сформироваться структуры многих типов. Первичными элементами для образования надмолекулярных структур являются глобулы и пачки. Они могут служить основанием для образования С'олее крупных структурных элементов полимерного тела. Образование глобул аналогично образованию капли жидкости под действием поверхностного натяжения. Полимеры, структурированные в форме глобул, обычно находятся в аморфном состоянии.[3, С.50]

Характер развития шейки и деформирования кристаллизующихся полимеров зависит от молекулярной массы М и температуры испытаний. При повышении М деформируемость и разрушение становятся более вязкими. К такому же эффекту приводит повышение температуры Т. Итак, характер взаимного расположения макромолекулярных цепей, их степень упорядоченности во многом определяют механические свойства полимерных материалов. При этом следует иметь в виду, что относительная роль молекулярных и надмолекулярных структур в формировании определенных физико-механических свойств полимера меняется в зависимости от температурных условий окружающей среды и жесткости макромолекул. Понижение температуры или гибкости макромолекулы усиливает роль надмолекулярных образований и, наоборот, повышение температуры Т или гибкости молекулярных цепочек выдвигает на первый план характер молекулярного строения.[3, С.51]

Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико: они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (1СГ1 - 1(Г4 с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрушение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига i происходят разукрупнение флуктуационных элементов структуры (ассоциа-тов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением т)эф при возрастании т. При достаточно больших т происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине-[2, С.173]

В кристаллических полимерах сосуществуют различные типы надмолекулярных образований. Таким образом, кристаллические полимеры представляют собой сложные поликристаллические агрегаты различной степени дефектности.[5, С.23]

Световая микроскопии позволяет определить форму н размеры надмолекулярных образований не менее 0,4 мкм, поскольку длина волн видимого света составляет 0,4—08 мкм Метод световой микроскопии в проходящем н отраженном свете применяют для изучения морфологии поликристаллов, например сферолитов. Чаще всего используют поляризованное излучение, поскольку кристаллизация и ориентация обусловливают эффект двойного лучепреломления В поляризованном свете радиальные сферолиты дают характерную картину «мальтийского креста», а кольцевые—набор светлых и темных концентрических линий (см. рис. 1 !8).[10, С.86]

В случае энтропийного механизма при переходе в процессе разрушения надмолекулярных образований от упорядоченной к неупорядоченной структуре 5 возрастает. В частности, приняв для энт--[5, С.150]

Ориентированным называют состояние полимеров, при котором оси макромолекул и надмолекулярных образований преимущественно располагаются вдоль осей ориентации. Ориентированные полимеры широко распространены в природе, волокна хлопка, льна, шелковые нити, шерсть, сухожилия, мышечная ткань и др. Синтетические ориентированные полимеры можно получить в процессе их синтеза, например полимеризацией в твердой фазе, когда мономер существует в форме монокристалла, полимеризацией жидкого полярного мономера в постоянном электрическом поле или полимеризацией из газовой фазы на ориентированной подложке.[10, С.64]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
7. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
8. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
9. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
10. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
11. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
12. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
13. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
14. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
15. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
16. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
17. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
18. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
19. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
20. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
21. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
22. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
23. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
24. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
25. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
26. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
27. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
28. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
29. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
30. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
31. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
32. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
33. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
34. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
35. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
36. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
37. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
38. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
39. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
40. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
41. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
42. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
43. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
44. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
45. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
46. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
47. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
48. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
49. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
50. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
51. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
52. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.

На главную