На главную

Статья по теме: Структурными образованиями

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Волокна в большинстве случаев представляют собой системы, в которых полимер сильно ориентирован и состоит из аморфной части со сравнительно рыхлой упаковкой элементов структуры, наполненной более упорядоченными структурными образованиями. Последние в процессе деформации могут ориентироваться и образовывать армирующий каркас. Ориентируется в процессе дефомации, по-видимому, и аморфная часть вещества, составляющего волокно.[4, С.138]

В то же время следует иметь в виду, что такое рассмотрение является первым приближением. Исследование структуры полимеров показало, что не только в кристаллическом, но и в аморфном состоянии почти всегда образуются отчетливо выраженные упорядоченные надмолекулярные структуры. Полимерные тела являются четко выраженными гетерогенными (неоднородными) системами. В них имеются границы раздела между структурными образованиями, которые могут являться зародышем трещин. При деформировании полимера возникают процессы, связанные со взаимным перемещением крупных структурных элементов, превращением в другие типы надмолекулярных образований и их •разрушением. В одном и том же объеме полимера одновременно могут сформироваться структуры многих типов. Первичными элементами для образования надмолекулярных структур являются глобулы и пачки. Они могут служить основанием для образования С'олее крупных структурных элементов полимерного тела. Образование глобул аналогично образованию капли жидкости под действием поверхностного натяжения. Полимеры, структурированные в форме глобул, обычно находятся в аморфном состоянии.[1, С.50]

Таким образом, ряд механических свойств в значительной степени определяется вторичными структурными образованиями в кристаллических полимерах, изменение которых не связано с плавлением.[6, С.124]

Образцы трибензоата целлюлозы плавили в течение 5 мин. при 270° и кристаллизовали при 230°. Зависимости объема сферолитов, скоростей их линейного роста и зародышеобразования от толщины пленки по характеру аналогичны полученным для полипропилена (рис. 3, а), но точке А соответствует толщина 8 и.. В трибензоате целлюлозы наблюдаются два типа сфероли-ток — радиальные и кольцевые, причем последние являются более совершенными структурными образованиями (сначала появляются радиальные, а затем некоторые из них превращаются в кольцевые).[6, С.196]

На основе экспериментальных данных и теоретических соображений В. А. Каргиным совместно с А. И. Китайгородским и Г. Л. Слонимским была предложена принципиально повая модель физической структуры полимерных тел. Согласно этой модели макромолекулы аморфных полимеров не располагаются хаотически, переплетаясь друг с другом случайным образом, а образуют упорядоченные ассоциаты — пачки цепей, являющиеся первичными надмолекулярными структурными образованиями.[6, С.7]

П(,>и равновесном набухании Afi1 = 0 и, следовательно, вся правая часть уравнения тоже равна нулю. Используя это и определив параметр х, например, осмометрическим методом, можно вычислить Мс. При применении ее следует, однако, учитывать, что Мс Ht относится к реально существующему мостику, обязательно соединяющему две макромолекулы, а является лишь усредненной качественной характеристикой сетки, так как во время сшивания поперечные связи могут возникать и между более крупными структурными образованиями. -[2, С.498]

К влиянию химической природы можно было бы отнести и влияние степени разветвленное™ цепей, поскольку, как было показано ранее на примере крахмала, механокрекинг на начальной стадии проходит преимущественно по связям, ответвляющимся от основной цепи. Сюда же относится и наличие в полимерных цепях определенных атомов, -которые Легко отщепляются при механояни-циировании с образованием низкомолекулярных соединений (ацетильных групп от ацетатов целлюлозы, HCN от полиакрилонитри-ла и т. д.). Кроме того, следует иметь в «виду, что в процессе переупаковки макромолекул и при механодиспергировании возникают все новые и новые «проходные» цепи, зажатые между структурными образованиями и подвергающиеся перенапряжению в первую очередь. Однако этот вопрос изучен недостаточно.[3, С.102]

Важная особенность полимеров, к-рую необходимо учитывать при интерпретации электронномикроскопич. снимков, полученных с использованием прямых методов препарирования,— незначительная разница плотностей кристаллич. и аморфных областей. Следствие этого — чрезвычайно малый контраст фотографич. снимков полимерных образцов. В ряде случаев контраст удается повысить при косом напылении на поверхность препарата слоя тяжелого металла. Более эффективен, особенно для выявления мелких, плотно уложенных структур, метод негативного контрастирования. Па препарат, предварительно помещенный на пленку-подложку или дырчатую пленку, наносят р-р какого-либо соединения, содержащего атомы тяжелых металлов (напр., фосфорновольфрамовой к-ты, уранил-ацетата). Эти соединения не должны взаимодействовать с изучаемым полимером. После удаления растворителя на исследуемом, образце остается тонкий слой (в несколько десятков А) осадка, причем концентрация р-ра подбирается такой, чтобы осадок заполнил в основном промежутки между структурными образованиями. После обработки объект будет выглядеть светлым на темном фоне, т. к. рассеивающая способность атомов осадка несравнимо больше, чем у полимера. Основу контраста изображения в этом случае будет составлять[7, С.475]

Важная особенность полимеров, к-рую необходимо учитывать при интерпретации электронномикроскопич. снимков, полученных с использованием прямых методов препарирования,— незначительная разница плотностей кристаллич. и аморфных областей. Следствие этого — чрезвычайно малый контраст фотографич. снимков полимерных образцов. В ряде случаев контраст удается повысить при косом напылении на поверхность препарата слоя тяжелого металла. Более эффективен, особенно для выявления мелких, плотно уложенных структур, метод негативного контрастирования. На препарат, предварительно помещенный на пленку-подложку или дырчатую пленку, наносят р-р какого-либо соединения, содержащего атомы тяжелых металлов (напр., фосфорновольфрамовой к-ты, уранил-ацетата). Эти соединения не должны взаимодействовать с изучаемым полимером. После удаления растворителя на исследуемом, образце остается тонкий слой (в несколько десятков А) осадка, причем концентрация р-ра подбирается такой, чтобы осадок заполнил в основном промежутки между структурными образованиями. После обработки объект будет выглядеть светлым на темном фоне, т. к. рассеивающая способность атомов осадка несравнимо больше, чем у полимера. Основу контраста изображения в этом случае будет составлять[10, С.474]

Представления о структуре аморфных полимеров в конденсированном состоянии как о системе перепутанных цепных молекул привели к разработке молекулярных механизмов пластицирующего действия добавок низкомолекулярных веществ, вводимых в такие полимеры, выражаемого правилами мольных [1] или объемных [2] долей. Влияние низкомолекулярных веществ на механические свойства полимеров рассматривалось в этих случаях на молекулярном уровне характеристики явления пластификации. Однако в последнее время эти представления претерпели существенные изменения. Оказалось, что полимеры представляют собой систему высокоупорядоченных вторичных структурных образований [3], имеющих в отдельных случаях строгую геометрическую огранку, сходную с кристаллическими формами [4—7]. Новые данные, полученные по характеристике структуры аморфных полимеров, оказались весьма плодотворными для понимания явлен:ия пластификации полимеров низкомолекулярными веществами, которые ограниченно совмещаются с полимерами. Было показано, что влияние именно таких низкомолекулярных веществ на механические свойства полимеров, определяющие их пластифицирующий эффект, связано со степенью распада надмолекулярных структур в полимерах. Можно представить, что процессы распада надмолекулярных структур в полимерах имеют такой же ступенчатый характер, как и процессы самого структурообразования. Полное разрушение всех вторичных структурных образований характеризуется возникновением термодинамически устойчивого раствора [8]. Уменьшение хрупких свойств материала в этом случае приводит к так называемой внутри-пачечной пластификации полимера [9]. Введение в полимер низкомолекулярных веществ, ограниченно совмещающихся с ним и вызывающих разрушение вторичных надмолекулярных образований, приводит к получению системы из молекул таких веществ, равномерно распределенных между первичными надмолекулярными образованиями — пачками цепей. Если при этом уменьшаются хрупкие свойства полимерного материала, имеет место так называемая межпачечная пластификация полимера [9]. Наконец, можно представить и существование начального акта распада, который должен характеризоваться нарушением контактов между вторичными надмолекулярными структурными образованиями. При этом подвижность таких сложных образований должна возрасти, а количество низкомолекулярного вещества, сорбированного на местах контактов, должно быть, по-видимому, весьма небольшим. Изложенные соображения явились предметом настоящего исследования.[6, С.387]

с низкомолекулярным веществом избыточное количество последнего распределяется между структурными образованиями, вызывая, напр., эффект так наз. «меж-пачечпой пластификации» (см. Пластификация), к-рая выражается в увеличении подвижности элементов структуры.[8, С.538]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
2. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
3. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
4. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
5. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
6. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
7. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
8. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
9. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
10. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную