Размеры структурных элементов существенно влияют на механические свойства полимеров, при этом чем они больше, тем больше напряжение рекристаллизации, больше хрупкость образца и меньше его удлинение [23]. Наилучшие механические свойства достигаются при достаточно малых размерах сферолитов. Естественно, что процесс разрушения структуры полимера при приложении внешней силы, как и процесс ее образования, носит многоступенчатый характер. Это особенно существенно при изучении закономерностей деформации полимеров. При любом малом и кратковременном приложении внешней силы происходит разрушение каких-либо ступеней структуры полимера, которые в различной степени перестраиваются и вновь образуются как в процессе деформирования, так и после его прекращения. Поэтому под процессом рекристаллизации следует понимать любые преобразования как первичной, так и вторичной кристаллической структуры [19].[7, С.21]
Высокая подвижность структурных элементов в высокоэластическом состоянии обусловливает легкость их перехода в ,.,.иповеоюе состояние (структурная релаксация). Среднее время структурной релаксации полимеров в высокоэластическом состоянии намного меньше, чем в стеклообразном. Так, в высокоэластнческом состоянии иремя структурной релаксации сегментов эластомеров при 293 К составляет 10~5—10~8 с по сравнению с 105—10* с для стеклообразного состояния. Это и предопределяет термодинамическую нерашювесность стеклообразного и равновесность высокоэластического состояния[17, С.242]
Вопрос. Почему волокна и пленки на основе полимеров с более широким ММР обладают меньшей прочностью, хотя степень ориентации структурных элементов в них может быть одинаковой?[2, С.64]
В литературе описаны различные виды нестабильности течения в процессе вальцевания [18]. Основной причиной разрушения потока в данном случае является накопление эластической энергии в процессе деформации (переработки) полимера, а не только малая величина адгезии эластомера к материалу валков. Скорость накопления избыточной эластической энергии в сажекаучу-ковой системе определяется соотношением между максимальным временем релаксации соответствующих структурных элементов и скоростью внешнего воздействия (скоростью сдвига).[1, С.79]
Релаксационный характер механических свойств и физических состояний полимеров. Специфика полимеров заключается не только в проявляющейся при определенных условиях способности к большим обратимым деформациям, но также в том, что их механические свойства носят резко выраженный релаксационный характер, т. е. сильно зависят от временной, а в случае периодических деформаций, от частотной шкалы. Эта. зависимость, как н высокоэластичность, является следствием длинноцепочечного строения полимеров и обусловлена необходимостью длительных промежутков времени (времен релаксации) для конформационной перестройки большого числа связанных между собой структурных элементов цепи при переходе ее из одного равновесного состояния в другое. Время релаксации является функцией температуры и за-[1, С.40]
Если b/a велико, Д(?см [см. уравнение (2.26)] становится положительным. Это связано с затруднениями, обусловленными заполнением объема раствора полимерными цепями, построенными из достаточно больших палочкообразных сегментов. Ранее было показано, что при увеличении концентрации таких жест-коцепных полимеров вероятность образования изотропного раствора уменьшается. Когда раствор изотропный, то/> (1 - е'1), а когда он анизотропный, то / < (1 - е'1). При Ь/а -> min значение/о стремится к/кр = 0,63. При/< 0,63 термодинамически более вероятным будет анизотропное состояние с параллельно расположенными цепями, т. е. с сохранением ориента-ционного порядка. Значение /Q возрастает с температурой, и при определенной температуре происходит скачкообразный переход из упорядоченного состояния в неупорядоченное (изотропное). Это наблюдается при /Q = 0,63. Переход из упорядоченного состояния в изотропное возможен при одновременной дезориентации структурных элементов и является фазовым переходом первого рода.[2, С.151]
Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико: они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (1СГ1 - 1(Г4 с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрушение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига i происходят разукрупнение флуктуационных элементов структуры (ассоциа-тов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением т)эф при возрастании т. При достаточно больших т происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине-[2, С.173]
Плотность упаковки р структурных элементов в гидратцеллюлозе несколько меньше, чем в нативной. Целлюлоза представляет собой аморфно-кристаллический полимер. Она ограниченно набухает в воде; в разбавленных растворах щелочей способна интенсивно набухать. Целлюлоза растворима в следующих растворителях: Кислоты:[2, С.291]
Влажная целлюлоза активируется быстрее, чем воздушно-сухая. Пересушенная целлюлоза активируется с трудом. Чем более рыхлой упаковкой структурных элементов характеризуются целлюлозные препараты, тем интенсивней и равномерней протекает процесс их последующего ацетилирования.[2, С.322]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.