На главную

Статья по теме: Элементов структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Подвижность различных элементов структуры полимеров характеризуется временами релаксации в широком диапазоне от 10~10 с до 1010 с, а соответствующие им релаксационные процессы наблюдаются методами релаксационной спектрометрии, например, при деформации полимеров под действием статических или переменных механических нагрузок или при воздействии электрических и магнитных (гл. VII, VIII) полей, а также в процессах стеклования (гл. II), течения (гл. V), диффузии и т. д.[4, С.58]

Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико: они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (1СГ1 - 1(Г4 с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрушение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига i происходят разукрупнение флуктуационных элементов структуры (ассоциа-тов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением т)эф при возрастании т. При достаточно больших т происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине-[1, С.173]

По изменению G', G" и tg б могут быть обнаружены движения различных элементов структуры при различных частотах и температурах.[2, С.153]

Физические состояния полимеров - состояния полимеров, различающиеся взаимным расположением элементов структуры (см. Фазовые превращения полимеров) и их подвижностью (см. Агрегатные состояния полимеров).[1, С.407]

Агрегатные состояния полимеров - физические состояния высокомолекулярных соединений, отличающиеся подвижностью элементов структуры и способностью к сохранению собственного объема и формы.[1, С.396]

Уже из этих упрощенных схем следует большое разнообразие релаксационных процессов, связанных с тепловым движением различных элементов структуры [21, с. 258; 38, с. 374]. Примем, что в полимерах релаксационные процессы состоят из групп быстрой и медленной стадии релаксации, которым соответствуют разные участки релаксационного спектра. С повышением температуры постепенно «размораживается» движение релаксаторов — малых[4, С.56]

В соответствии с изложенными позициями в книге очень кратко освещены общие сведения о структурной организации полимеров и о подвижности элементов структуры. Обсуждаются основные вопросы физической кинетики, термодинамики и статистической физики полимеров. Рассматриваются процессы ориентации и вязкого течения полимеров разного строения, находящихся в различных релаксационных состояниях. С учетом современных представлений о молекулярном строении и структурной организации аморфных полимеров обсуждаются особенности проявлений их электрических и магнитных свойств.[4, С.8]

Аморфное состояние полимеров - фазовое состояние (см.) полимеров, характеризующееся наличием только ближнего порядка (см.) во взаимном расположении элементов структуры. Наблюдается в твердом и жидком агрегатных состояниях (см.).[1, С.396]

Кристаллическое состояние полимеров - фазовое состояние (см.) полимеров, характеризующееся наличием как ближнего, так и дальнего ориентационного и координационного порядка во взаимном расположении элементов структуры. Наблюдается в твердом агрегатном состоянии.[1, С.400]

Другой особенностью изменения диэлектрической проницаемости и потерь в полимерах является их чувствительность не только к изменениям сегментальной подвижности, но и к проявлениям подвижности боковых и концевых групп, а также отдельных звеньев макромолекулы. Благодаря высокой чувствительности к проявлению подвижности всех элементов структуры макромолекул, а также возможности проводить исследования в уникально широком диапазоне частот изучение диэлектрических свойств является прекрасным способом исследования структуры полимеров, к сожалению, недостаточно еще распространенным применительно к эластомерам.[3, С.74]

Мы воспользовались методом аналогий, чтобы точнее определить место релаксационной спектрометрии в общей системе представлений физики полимеров. Перейдем теперь от отдельных макромолекул к конденсированным макроскопическим полимерным системам. Все только что изложенные общие принципы сохраняют свою силу и здесь; растянув ось t в -сторону больших времен, мы можем определить области зондирования дискретных или флуктуационных элементов структуры. При этом, однако, надо особо подчеркнуть следующие два обстоятельства.[4, С.53]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
7. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
8. Белозеров Н.В. Технология резины, 1967, 660 с.
9. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
10. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
11. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
12. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
13. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
14. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
15. Бартенев Г.М. Физика полимеров, 1990, 433 с.
16. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
17. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
18. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
19. Серков А.Т. Вискозные волокна, 1980, 295 с.
20. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
21. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
22. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
23. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
24. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
25. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
26. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
27. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
28. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
29. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
30. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
31. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
32. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
33. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
34. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
35. Виноградов Г.В. Реология полимеров, 1977, 440 с.
36. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
37. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
38. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
39. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
40. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
41. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
42. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
43. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
44. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
45. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
46. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
47. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную