На главную

Статья по теме: Электронную микроскопию

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для оценки надмолекулярных образований меньшего размера используют электронную микроскопию Просвечивающая электронная, микроскопия (ПЭМ) в принципе аналогична световой, но вместо светового пучка используют пучок электронов Длина волны пучка электронов л зависит от напряжения V Я. (1,5/^) ' Для ускорении электронов применяют высокое напряжение (50—100 кВ и даже 1 МБ); электронный пучок фокусируется с помощью электростатических электромагнитных полей Изображение формируется с помощью дополнительных электростатических или электромагнитных лннз и наблюдается на флуоресцентном экране или фотопластинке. Съемку проводят при глубоком вакууме (~10 5 мм рт ст.), показатель преломления пгр в этих условиях равен !. С повышением напряжения снижается длина волны пучка электронов н следовательно, растет разрешающая способность микроскопа. Наилучшее разрешение у промышленных приборов составляет 0,2—05 ня, а увеличение 103—!05 раз. Возникновение контраста на электронно микроскопических снимках обусловлено различной рассеивающей способностью идер разных атомов по отношению к электронному лучку. Поэтому полимеры, состоящие из легких идер часто дают неотчетливые снимки Для повышения контрастности их обрабатывают тяжелыми металлами, такими, как палладий, золото, хром, платина, осмий и др. Образцы для ПЭМ готовят в виде тонких («0,1 мкм) пленок, тонких срезов или так называемых «реплик», т е. отпечатков поверхностей сколов образцов^ Этот метод используют для изучения морфологии кристаллов н аморфных полимеров. К числу недостатков ПЭМ следует отнести сложность приготовления образцов н возможность ошибок (^артефактов») в определении структуры[1, С.86]

Электронную микроскопию для исследования полимеров использовали также Каргин и Корецкая [927] и Скотт [928]. Изучение структуры монослоев полиамида на поверхности воды под электронным микроскопом проведены Инокути [929].[12, С.258]

Просвечивающую электронную микроскопию применяют для изучения внутренней микроморфологии, полимерных кристаллических решеток, полимерных сеток, распределения пор по размерам, мо-лекулярновесового распределения (разд. 27.6).[5, С.109]

В исследованиях полимеров применяют два основных метода: просвечивающую электронную микроскопию (ПЭМ) и растровую, или сканирующую, электронную микроскопию (РЭМ, или СЭМ). В ПЭМ используют довольно сложные методики подготовки образцов. Образцы готовят либо прямыми методами в виде ультратонких срезов или тонких пленок, получаемых выливанием разбавленных растворов полимеров на поверхность воды или другой жидкости, либо косвенным методом в виде реплик (копий с поверхности изучаемого материала), пластмассовых или угольных. Для повышения контрастности электронных микрофотографий используют напыление металлов на полимерный объект или реплику, нанесение других контрастирующих веществ. Иногда перед получением реплик объект замораживают в жидком азоте и раскалывают.[4, С.144]

Для определения совместимости полимеров используют рентгенографию, оптическую и электронную микроскопию, значения механических и диэлектрических потерь, ЯМР, радиотермолюминесценцию, построение фазовых диаграмм, термо-[9, С.286]

Для изучения структуры полимеров в К. с. применяют рентгенографию, электронографию, электронную микроскопию и оптпч. методы (см. Рентгеноструктур-ный анализ, Электронномикроскопическое исследование, Светорассеяние), позволяющие изучать структурные образования различных размеров — от десятых долей нм (от нескольких А) до десятков мкм. С гкмощью метода ядерного магнитного резонанса, электрнч. методов исследуют молекулярные движения в кристаллических п аморфных областях полимеров.[10, С.594]

Для изучения структуры полимеров в К. с. применяют рентгенографию, электронографию, электронную микроскопию и оптич. методы (см. Рентгеноструктур-ный анализ, Электронномикроскопическое исследование, Светорассеяние), позволяющие изучать структурные образования различных размеров — от десятых долей нм (от нескольких А) до десятков мкм, С помощью метода ядерного магнитного резонанса, электрич. методов исследуют молекулярные движения в кристаллических и аморфных областях полимеров.[11, С.591]

Методы изучения гомогенности и морфологии смесей полимеров включают изучение процессов стеклования, оптическую, флуЫ ресцентную, атомно-силовую и электронную микроскопию, малоугловое рассеяние рентгеновских лучей и нейтронов и ядерный магнит-* ный резонанс. Все эти методы применимы при исследовании полимеров в массе, однако могут быть некоторые ограничения, связанные с присутствием наполнителей [4]. Наиболее информативными оказываются методы микроскопии, так как контрастирование фаз дает воз-[3, С.574]

Изучению кристаллизации полимерных расплавов в условиях, приближающихся к технологическим, а также исследованию структуры промышленных пленок и волокон, посвящено большое число работ, использующих самые разнообразные физические методы: электронную микроскопию, рентгеновскую дифракцию, светорассеяние, двулучепреломление, термографию, селективную деградацию с последующим измерением ММР и т. д. [67].[8, С.58]

Исследование поведения латексов сополимера этилакрилата с АК и МАК при кондуктометрическом титровании показало [216] наличие на кривых титрования характерной точки, соответствующей 'количеству оттитрованных карбоксильных групп, расположенных на -периферии частиц. Применяя электронную микроскопию, авторы установили различие в процессе растворения сополимеров с АК и МАК, что связано с разным расположением карбоксильных групп в частицах. Звенья более гидрофобного сомономера — мет-акриловой кислоты равномерно распределены в толстом поверхностном слое частиц, тогда как концентрация звеньев более гидрофильной акриловой кислоты резко уменьшается от -поверхности в глубь частицы. Даже при высоком содержании акриловой .кислоты сердцевина частиц остается нерастворимой в щелочных растворах, что указывает на очень низкую концентрацию или полное отсутствие карбоксильных групп в полимере, находящемся в этих частицах.[7, С.137]

Кинетическое (термофлуктуациояное) разрушение связано с накоплением структурной повреждешгости (микротрещин), образующейся при разрыве связи. Рассмотрим специфику этого процесса, который поддается количественному анализу с помощью прямых физических методов [89, 90, 160], включая инфракрасную спектроскопию (ИКС), электронный парамагнитный резонанс (ЭПР), масс-спектрометрию (МС), ядерный магнитный резонанс (ЯМР), рентгеновскую дифракцию в малых (РДМ) и больших (РДБ) углах, электронную микроскопию (ЭМ), дифракцию видимого света (ДС) и т. п.[6, С.135]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
2. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
5. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
6. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
7. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
8. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
9. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
12. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную