На главную

Статья по теме: Электронно микроскопических

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для оценки надмолекулярных образований меньшего размера используют электронную микроскопию Просвечивающая электронная, микроскопия (ПЭМ) в принципе аналогична световой, но вместо светового пучка используют пучок электронов Длина волны пучка электронов л зависит от напряжения V Я. (1,5/^) ' Для ускорении электронов применяют высокое напряжение (50—100 кВ и даже 1 МБ); электронный пучок фокусируется с помощью электростатических электромагнитных полей Изображение формируется с помощью дополнительных электростатических или электромагнитных лннз и наблюдается на флуоресцентном экране или фотопластинке. Съемку проводят при глубоком вакууме (~10 5 мм рт ст.), показатель преломления пгр в этих условиях равен !. С повышением напряжения снижается длина волны пучка электронов н следовательно, растет разрешающая способность микроскопа. Наилучшее разрешение у промышленных приборов составляет 0,2—05 ня, а увеличение 103—!05 раз. Возникновение контраста на электронно микроскопических снимках обусловлено различной рассеивающей способностью идер разных атомов по отношению к электронному лучку. Поэтому полимеры, состоящие из легких идер часто дают неотчетливые снимки Для повышения контрастности их обрабатывают тяжелыми металлами, такими, как палладий, золото, хром, платина, осмий и др. Образцы для ПЭМ готовят в виде тонких («0,1 мкм) пленок, тонких срезов или так называемых «реплик», т е. отпечатков поверхностей сколов образцов^ Этот метод используют для изучения морфологии кристаллов н аморфных полимеров. К числу недостатков ПЭМ следует отнести сложность приготовления образцов н возможность ошибок (^артефактов») в определении структуры[6, С.86]

Если в стеклообразной совокупности цепей нет регулярного упорядочения или коллоидной структуры, то говорят об аморфном состоянии. Не так давно природа неупорядоченного или аморфного состояния твердых полимеров вызывала оживленную дискуссию и тщательно исследовалась. Примерно до 1960 г. преобладало представление о том, что в таких изотропных, некристаллических полимерах, как большинство каучуков, стеклообразных полимеров (ПС '>, ПВХ, ПММА, ПК) или частично кристаллических полимеров (ПХТФЭ, ПТФЭ, ПЭТФ), цепные молекулы имеют случайное распределение и что модель статистического клубка, или «спагетти», правильно отражает «структуры» этих полимеров. В последующие годы в связи с развитием рентгенографии аморфных полимеров все большее признание приобретала концепция ближнего порядка цепных молекул. Эта концепция со всей очевидностью следует из сравнения сегментального объема и плотности аморфной фазы, из электронно-микроскопических наблюдений структурных элементов, калориметрических исследований, закономерности кинетики кристаллизации и изучения ориентации полимерного клубка. После 1970 г. в дополнение к световому и малоугловому[2, С.26]

На электронно-микроскопических снимках пленок полиакриловой кислоты, полученных из разбавленных растворов после испарения растворителя, вядны шарики, свидетельствующие о свернутой глобулярной форме макромолекул этого полимера (рис. 42) (см. стр. IV).[4, С.120]

В настоящее время на основании результатов электронно-микроскопических исследований (глава V) возникли новые представления о надмолекулярных структурах в полимерах 3-п. Под этим термином понимают любые структуры, образованные в результате[4, С.143]

Действительно, хорошо известно, что кристаллический полимер растворяется гораздо хуже, чем аморфный полимер того же химического строения. Ориентированные образцы также хуже растворяются по сравнению с изотропными образцами. Возможно, что и в случае изотропных образцов аморфных полимеров надмолекулярная структура может быть различной, однако этот вопрос до сих пор является предметом дискуссии. На международной конференции в Лондоне в 1979 г. были представлены экспериментальные и теоретические данные об отсутствии "нодульной" структуры в аморфных полимерах, причем данные электронно-микроскопических исследований поверхности пленок и сколов были причислены к артефактам [142]. Трудно, однако, представить, что если поверхность пленки, полученной из раствора, и поверхность скола блочного образца, полученного из расплава, дают одну и ту же электронно-микроскопическую картину глобул, то эта картина является следствием артефактов.[5, С.333]

В работе [27] исследовали сплав Си-50 вес. %Ag, подвергнутый измельчению в шаровой мельнице с последующей консолидацией ИПД кручением. Была достигнута полная плотность образцов, но на светлопольных электронно-микроскопических изображениях (рис. 1.35а) не было выявлено никакой зеренной структуры. Наблюдаемый контраст подобен тому, что характерен для аморфной структуры. На дифракционной картине (рис. 1.355) видно широкое интенсивное дифракционное кольцо, отражающее формирование сильноискаженной кристаллической решетки и ультрадисперсной структуры. Последняя была выявлена только на темнопольном изображении (рис. 1.35е), где видны фрагменты структуры со средним размером 15 нм.[7, С.53]

Электронно-микроскопические исследования. Уже в первых электронно-микроскопических исследованиях наноструктурных материалов, полученных ИПД, было обращено внимание на специфический вид границ зерен в сравнении с обычными отожженными материалами [8, 37]. Типичным примером такого дифракционного контраста является изображение микроструктуры сплава Al-4 %Cu-0,5 %Zr [8], имевшего после ИПД кручением средний размер зерен около 0,2 мкм (рис. 2.2а). Для сравнения рядом приведена микроструктура этого же образца, подвергнутого дополнительному отжигу при 160°С в течение 1ч (рис. 2.26). В обоих случаях наблюдалась структура зеренного типа, имеющая преимущественно болыпеугловые границы. Тем не менее вид толщинных контуров экстинкции на границах зерен на рис. 2.2о отличается от такового на рис. 2.26 значительным уширением.[7, С.62]

Согласно динамической теории дифракционного контраста [112-114], толщинные контуры экстинкции являются контурами одинаковой глубины в тонкой фольге и появляются на электронно-микроскопическом изображении, когда некоторое семейство плоскостей данного зерна находится в брэгговских условиях отражения. В работах [115, 116] проанализирована физическая природа уширения толщинных контуров экстинции на электронно-микроскопических изображениях границ зерен в наноструктурных материалах и показано, что оно связано с высоким уровнем внутренних напряжений и искажений кристаллической решетки вблизи границ зерен в образцах, подвергнутых ИПД. На основе этого анализа предложена методика определения величины упругих деформаций в зависимости от расстояния до границы зерна.[7, С.62]

Полученные результаты позволили заключить [116], что уши-рение толщинных контуров экстинции на электронно-микроскопических изображениях границ зерен в наноструктурных материалах действительно связано с большими упругими деформациями. Более того, максимальные значения упругих деформаций наблюдаются в приграничных областях, где их уровень значительно выше, чем в теле зерен. При этом развитый метод может быть использован для количественных измерений упругих деформаций в индивидуальных границах.[7, С.64]

Известно [112, 120], что использование картин Муара позволяет наиболее отчетливо выявлять небольшие искажения кристаллической решетки. Данный принцип основан на том факте, что небольшие изменения в трансляционной симметрии приводят к заметным изменениям в картинах Муара. Картины Муара часто наблюдаются в тех случаях, когда изображения кристаллических решеток двух соседних зерен накладываются друг на друга. Характерными чертами картин Муара при электронно-микроскопических исследованиях искажений кристаллической решетки являются искривления получаемых изображений кристаллографических плоскостей и часто изменение расстояния между ними. С другой стороны, наблюдаемые явления могут быть вызваны дифракционными эффектами.[7, С.66]

В работе [56] была предпринята попытка определить характер распределения зернограничных разориентировок в чистой Си (99, 98%), подвергнутой РКУ-прессованию. Для определения локальных разориентировок в ультрамелкозернистом нанострук-турном состоянии использовали кикучи-линии на электронно-микроскопических картинах микродифракции, полученных с 5 различных областей фольг. Результаты анализа, проведенного для 154 границ, свидетельствуют о том, что распределение границ зерен носит хаотичный характер (рис. 2.9). При этом более чем 90 % границ зерен являются болыпеугловыми.[7, С.70]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
10. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
11. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
12. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
13. Серков А.Т. Вискозные волокна, 1980, 295 с.
14. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
15. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
16. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
17. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
18. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
19. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
20. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
21. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
22. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
23. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
24. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
25. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
26. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
27. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
28. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
29. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
30. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную