На главную

Статья по теме: Структуры полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Гетерогенность структуры полимеров и ее энергетических характеристик на всех уровнях и термофлуктуационный статистический характер освобождения тех или иных степеней свободы молекулярного движения приводят к появлению большого числа вторичных областей релаксации, которые являются размытыми, т. е. имеют место не точки, а области переходов. Плавление кристаллов происходит в результате двух факторов: энергетического (преодоление сил межмолекулярного взаимодействия) и энтропийного (повышение гибкости полимерных цепей). Поэтому Гпл в зависимости от сил межмолекулярного взаимодействия и жесткости молекулярных цепей может существенно изменяться. Так как Тс и Гпл определяются уровнем подвижности молекулярных цепей, между ними существует связь следующего вида: 0,5 71Пл< Г<:ГС<0,8ГПЛ. В соотношении Гпл = const• Гс для симметричных полимеров const = 0,5, а для несимметричных (в которых атом главной цепи не содержит двух одинаковых заместителей) const = = 0,66.[6, С.274]

При изучении надмолекулярной структуры полимеров методом электронной микроскопии наименьшие искажения получаются при травлении полимеров в плазме высокочастотного кислородного разряда. Это дает возможность оценить соотношение между объемом, занимаемым упорядоченными микрообластями (микроблоками структуры) независимо от их природы, и неупорядоченной частью полимера (свободные цепи и сегменты), а также средний линейный размер микроблоков. Например, для эластомеров при комнатной температуре характерна объемная доля микроблоков примерно 20%. Это значит, что 80% по объему занимают свободные цепи и сегменты, ответственные за высокую эластичность этих материалов. Средний линейный размер структурных микроблоков 10—30 им, что соответствует типичным размерам частиц в коллоидных системах. Малое различие в плотностях упорядоченных и неупорядоченных микрообластей (1—2%) является причиной того, что применение дифракционных методов для исследования структуры аморфных эластомеров не всегда эффективно. Некоторые полимеры в блоке характеризуются глобулярной структурой (рис. 1.12) с размерами микроблоков 12—35 нм.[6, С.27]

Подвижность различных элементов структуры полимеров характеризуется временами релаксации в широком диапазоне от 10~10 с до 1010 с, а соответствующие им релаксационные процессы наблюдаются методами релаксационной спектрометрии, например, при деформации полимеров под действием статических или переменных механических нагрузок или при воздействии электрических и магнитных (гл. VII, VIII) полей, а также в процессах стеклования (гл. II), течения (гл. V), диффузии и т. д.[5, С.58]

Влияние температуры. На основании исследований, проведенных во ВНИИполимер о зависимости структуры полимеров хлоропрена от температуры путем определения молекулярно-массового распределения полимеров (методами ИКС и ЯМР), содержания кристаллической и аморфной фаз (методом рентгено-структурного анализа) было установлено, что с повышением температуры полимеризации происходит снижение регулярности структуры полимеров и уменьшение их средней молекулярной массы. Одновременно с повышением температуры полимеризации уменьшается скорость кристаллизации (рис. 1). При пониженных температурах полимеризации, тенденция к кристаллизации сохраняется в вулканизатах, вызывая увеличение их твердости и уменьшение эластичности [18]. На основании данных о влиянии температуры на свойства полимеров хлоропрена была принята в качестве оптимальной температура полимеризации 40 °С.[1, С.372]

В то же время следует иметь в виду, что такое рассмотрение является первым приближением. Исследование структуры полимеров показало, что не только в кристаллическом, но и в аморфном состоянии почти всегда образуются отчетливо выраженные упорядоченные надмолекулярные структуры. Полимерные тела являются четко выраженными гетерогенными (неоднородными) системами. В них имеются границы раздела между структурными образованиями, которые могут являться зародышем трещин. При деформировании полимера возникают процессы, связанные со взаимным перемещением крупных структурных элементов, превращением в другие типы надмолекулярных образований и их •разрушением. В одном и том же объеме полимера одновременно могут сформироваться структуры многих типов. Первичными элементами для образования надмолекулярных структур являются глобулы и пачки. Они могут служить основанием для образования С'олее крупных структурных элементов полимерного тела. Образование глобул аналогично образованию капли жидкости под действием поверхностного натяжения. Полимеры, структурированные в форме глобул, обычно находятся в аморфном состоянии.[3, С.50]

Методы релаксационной спектрометрии позволяют получать сведения о ряде конкретных характеристик элементов структуры полимеров. Так, по времени релаксации (их численным значениям при данной температуре) судят о подвижности тех или иных элементов структуры, а из температурной зависимости т и зависимости т от напряжения получают данные об энергии активации релаксационных процессов «?а, о величине предэкспоненциального коэффициента В в формуле (1.23), а через него — о размерах релаксаторов.[5, С.61]

Некоторые аспекты кристаллического состояния' рассмотрены в связи со свойствами ориентированных систем и с методами «зондирования» структуры полимеров (гл. VII и VIII). Но в целом кристаллическое состояние и фазовые переходы нами не рассматривались. Во Введении и гл. произведена своего рода «отбраковка» материала: речь идет не столько о том, чему посвящена книга, сколько о том, чему она не посвящена.[5, С.8]

В установившихся режимах течения поведение различных полимеров целесообразно сравнивать в условиях, когда TJ->TIO. При этом за меру изменения структуры полимеров принимается отношение TI/T^O при данных значениях напряжения и скорости сдвига (когда процесс течения описывается уравнением Ньютона Р = т]оу)-В эквивалентных состояниях полимеры могут находиться как при одинаковых значениях произведения уцо, так и при одинаковых Р. Возможность использования метода универсальной температурно-инвариантной характеристики вязкости упрощает измерения в широких диапазонах температур, скоростей и напряжений сдвига, позволяя однозначно характеризовать состояние полимеров при установившихся режимах течения. Следует отметить, что эффективное применение данного метода для характеристики вязкостных свойств полимерных систем разных видов (термопластов, эластомеров) ограничивается их состоянием, в котором при разных напряжениях и скоростях сдвига вязкость T]-MIO. 6.2.4. Энергия активации вязкого течения полимеров[6, С.160]

Используя спектроскопические методы исследования, автор рассматривает вопросы идентификации спектров свободных радикалов, образующихся при механических воздействиях. Для анализа структуры полимеров и явлений, происходящих в них под нагрузкой, применяются хорошо зарекомендовавшие себя методы электронного парамагнитного и ядерного магнитного резонансов, современной голографии, а также электронная микроскопия, масс-спектрометрия и малоугловое рентгеновское рассеяние. Совокупное применение этих методов показало, что механическое разрушение полимеров происходит при совместном действии внешней силы и теплового движения.[2, С.5]

Важной составной частью работ по синтезу каучуков с необходимым комплексом свойств явились структурные исследования, направленные, с одной стороны, на изучение зависимости молекулярной структуры полимеров различных типов от условий их синтеза и, с другой, на установление -закономерностей влияния основных молекулярных параметров на физические, физико-механические и технологические свойства полимеров. Развитие этих исследований в значительной мере опиралось на труды А. П. Александрова, П. П. Кобеко, В. А. Каргина и П. Флори, в которых были сформулированы фундаментальные принципы строения молекулярных цепей и релаксационной природы механических и вязко-. эластических свойств полимеров,[1, С.14]

Несмотря на сравнительно небольшой срок, прошедший со вре< мени появления методов магнитного резонанса, они уже дали много важных результатов для науки о полимерах. Из приведенных в данной главе примеров применения магнитного резонанса для исследования структуры полимеров видно, что метод ЯМР может служить ценным дополнением к рентгенографическим и электроно-графическим методам идентификации их структуры.[5, С.276]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
4. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
5. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
6. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
7. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
8. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
9. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
10. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
11. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
12. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
13. Амброж И.N. Полипропилен, 1967, 317 с.
14. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
15. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
16. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
17. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
18. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
19. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
20. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
21. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
22. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
23. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
24. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
25. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
26. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
27. Серков А.Т. Вискозные волокна, 1980, 295 с.
28. Фихтенгольц В.С. Атлас ультрафиолетовых спектров поглощения веществ, применяющихся в производстве синтетических каучуков, 1969, 189 с.
29. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
30. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
31. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
32. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
33. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
34. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
35. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
36. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
37. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
38. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
39. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
40. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
41. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
42. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
43. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
44. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
45. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
46. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
47. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
48. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
49. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
50. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
51. Семенович Г.М. справочник по физической химии полимеров том 3, 1985, 592 с.
52. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
53. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
54. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
55. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
56. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
57. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
58. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
59. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
60. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
61. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
62. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
63. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
64. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
65. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
66. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
67. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
68. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
69. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
70. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
71. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.
72. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную