На главную

Статья по теме: Полимеров происходит

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В процессе получения полимеров происходит, по-видимому, реакция переноса активного центра от радикала «ОН на полимерную цепь с отрывом атома водорода; образовавшиеся полимерные радикалы могут либо инициировать дальнейший рост цепи с образованием разветвленных молекул, либо рекомбинировать с имеющимися в системе в избытке первичными радикалами «ОН. Последняя реакция приводит к повышению функциональности полимера без изменения его молекулярной массы [36].[1, С.424]

При охлаждении некристаллических полимеров происходит резкое уменьшение их теплоемкостей при постоянном давлении ср (рис. 10.18). Существование сильных валентных взаимодействий между атомами в макромолекулах и более слабого взаимодействия между цепями приводит к тому, что характер изменения теплоемкостей полимеров при низких температурах заметно отличается от дебаевского. В жидкости изменение температуры ведет к изменению и средних расстояний между частицами, и их взаимного расположения (ближнего порядка), что и определяет ее большую теплоемкость. Теплоемкость твердого тела определяется энергией, необходимой для изменения только средних расстояний между частицами (при их неизменном взаимном расположении). В связи с этим теплоемкость полимера в твердом состоянии значительно меньше, чем в жидком.[6, С.268]

Присутствие в полимере галоида устанавливают качественными реакциями. При сухой перегонке полимеров происходит выделение газообразных продуктов, водные растворы к оторых имеют сильнокислую реакцию. Если к нагретому до кип ения раствору полимера в пиридине добавить 2%-ный раствор N аОН в метиловом спирте, раствор быстро окрашивается и образуется темно-коричневый нерастворимый полимер. Интенсизнэст ь окраски растворов возрастает в следующем порядке: полив инилхлорид< поливинилбромид<поливинилиодид. Появление о краски раствора, а затем и образование нерастворимого полимера является следствием его дегидрогалоидирования с последую щим «сшиванием» макромолекул. Окрашивание пиридиновы х растворов других галоидзамещенных полимеров значительно менее интенсивно.[4, С.276]

Полимеры представляют собой легкоподвижные жидкости или смолы, все они растворяются в органических растворителях. При частичном гидролизе полимеров происходит дальнейшее увеличение их молекулярного веса и образование линейных полимеров:[4, С.500]

Особенности физических свойств полимеров, находящихся в ориентированном состоянии, связаны с их специфической анизотропной структурой. При деформировании полимеров происходит изменение конформаций цепных макромолекул, их взаимного расположения, а также изменение различных форм надмолекулярной организации. Эти изменения структуры полимеров при их деформировании обусловлены тем, что ее элементы ориентируются в направлении действия сил. Вследствие наличия малых и больших структурных элементов возможны как ориентация макромолекул в целом, так и их частей. Чтобы ориентировать части цепных макромолекул, необходимо не только повернуть их, но и переместить, так как все они связаны в цепи, локально собранные в микроблоки, и могут поворачиваться только при одновременном перемещении других частей. Скорости этих двух процессов ориентации резко различны, поэтому при действии ориентирующих сил прежде всего развивается ориентация участков цепей, а затем и ориентация цепных макромолекул в целом. Однако в соответствии с правилом стрелки действия (см. рис. II. 2) можно, варьируя скорость и температуру растяжения, сделать доминирующим лишь один процесс ориентации, в частности добиться «одноактного» распрямления всех цепей [22].[5, С.184]

Деструкция полимеров происходит при самых разнообразных механических воздействиях. Еще в 1934 г. Штаудингер установил, что при многократном пропускании растворов полимеров через капилляр вязкость раствора вследствие деструкции макромолекул уменьшается.[7, С.295]

При деформировании реальных полимеров происходит изменение их объема. Это обусловлено, в частности, изменением внутренней энергии, поскольку деформация, сопровождающаяся изменением внутренней энергии, всегда влечет за собой из-[9, С.247]

При кристаллизации неполярных полимеров происходит снижение проводимости тем большее, чем выше степень кристалличности. Это еще раз подчеркивает, что проводимость в диэлектриках имеет преимущественно ионным характер так как электронная проводимость увеличивается при кристаллизации, а ионная — снижается.[9, С.370]

Таким образом, разрушение реальных полимеров происходит в результате тепловых флуктуации, а роль внешних нагрузок сводится к ускорению термофлуктуационного разрыва связей. Повышение степени ориентации, плотности упаковки, снижение коэффициента перенапряжения, увеличение прочности связей — все это способствует повышению прочности, а рост дефектности, в том числе и микротрещин, снижает прочность. Чтобы выяснить причины снижения прочности при наличии в теле микротрещкн, рассмотрим термодинамику разрушения и некоторые теоретические положения, объясняющие эти причины.[9, С.324]

Таким образом, кристаллические полимеры разрушаются по механизму, характерному длт твершх ориентированных тел с малодефектной структурой Разрушение аморфно-кристаллических полимеров происходит по аморфной части по механизму, определяемому условиями процесса (температурой и скоростью). Разрушение полимеров при динамических нагрузках. Разрушение полимеров под действием, циклических деформаций происходит в результате динамической усталости или утомления. Динамическая усталость — это снижение прочности под влиянием многократных периодических нагрузок[9, С.335]

Реакции, протекающие без разрыва главной цепи макромолекулы. Многие полимеры при повышенной температуре претерпе-рают значительные химические и физические изменения, не сопровождающиеся разрывом связей а цепи. При нагреваний таких полимеров происходит отщепление боковых заместителей, приводящее к образованию более термостойких продуктов. В некоторых сл\чаях продукты термической обработки теряют растворимость. Так, например, при нагревании полимерных хлорпроизводных углеводородов (поливиннлхлорид, перхлорвиниловая смола*, поли-винилидепхлорид) до температур, не превышающих 130ЭС, про-исходит отщепление хлористого водорода. При Этом полимер постепенно теряет растворимость. При нагревании этиз продуктов в течение нескольких часов при 170° С получаются почти полиостью нерастворимые продукты вследствие образования сетчатой структуры. Скорость отщепления хлористого водорода у поливинилиден-хлорида примерно в 3 раза выше, чем у поливинидхлорида.[8, С.60]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
4. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
5. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
6. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
7. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
8. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
9. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
10. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
11. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
12. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
13. Бартенев Г.М. Физика полимеров, 1990, 433 с.
14. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
15. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
16. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
17. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
18. Серков А.Т. Вискозные волокна, 1980, 295 с.
19. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
20. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
21. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
22. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
23. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
24. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
25. Северс Э.Т. Реология полимеров, 1966, 199 с.
26. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
27. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
28. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
29. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
30. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
31. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
32. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
33. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
34. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
35. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
36. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
37. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
38. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
39. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
40. Гастров Г.N. Конструирование литьевых форм в 130 примерах, 2006, 333 с.
41. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
42. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
43. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
44. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
45. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
46. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
47. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную