На главную

Статья по теме: Повышению прочности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Иногда специфическое влияние металла на полимер способствует значительному повышению прочности связи. Например, широко известно каталитическое действие меди на натуральный каучук, приводящее к окислительной деструкции [155]. Этим объясняется, очевидно, высокая адгезия натурального каучука к меди [129]. Особенно существенно влияние природы металла на адгезионную прочность после теплового старения. Оказалось, что пониженной теплостойкостью обладают клеевые соединения меди, никеля, железа и стали. Этот эффект становится понятным, если учесть, что перечисленные металлы, имеющие переменную валентность, являются переносчиками электронов и ускоряют, таким образом, процесс старения полимерного адгезива.[31, С.312]

Пенопласт представляет собой газонаполненную твердую пену с равномерной замкнуто-пористой структурой. В промышленности пенопласт получают двумя методами: непрерывным беспрессовым и прессовым. Более прогрессивным и экономичным является первый метод. Достоинство второго метода — его универсальность. Почти любому термопласту при соответствующем подборе газообразовате-лей и режима вспенивания можно придать пенообразное состояние. В промышленности выпускаются различные марки пенопластов на основе поливинил-хлорида (ПВ-1, ПВХ-1, ПВХ-2 и др.), различающихся пористостью (кажущейся плотностью) II прочностью. При получении пенопластов исходная композиция кроме полимера и газообразовате-ля содержит другие компоненты, выполняющие определенную роль. Так, при получении пенопласта ПВ-1 в исходную композицию вводят перхлорвинил, который способствует увеличению равномерности пены, повышению прочности и улучшению антикоррозионных свойств пенопласта. Метилметакри-лат, являясь растворителем перхлорвинила, придает композиции пластичность, повышает ее текучесть. Образующийся полиметилметакрилат увеличивает прочность пенопласта. В качестве инициатора применяют дипитрил ало-бис-изомасляной кислоты (порофор), а газообразователя — карбонат аммония.[2, С.31]

Одним из направлений по повышению прочности и износостойкости резиновых деталей является введение армирующих волокон [42,52,79,80,86].[4, С.173]

Для синтетического полиизопрена увеличение содержания цыс-1,4-звеньев приводит к существенному повышению прочности резин даже в ненаполненных смесях (рис. 8) в результате увеличения скорости кристаллизации при растяжении.[1, С.86]

Применение латекса СК.С-ЗОШХП вместо латекса СКС-ЗОШ в пропиточных составах приводит к значительному повышению прочности связи корда с резиной и к повышению эксплуатационных качеств шин. При введении ускорителей в латексно-резор-цин-формальдегидные пропиточные составы повышения прочности связи резины с кордом не наблюдается. Нет необходимости вводить в пропиточный состав серу, так как возможна миграция ее в пропиточный состав из обкладочной резины.[6, С.421]

Было показано [52, 53], что нагревание двух каучуков, способных к химическому взаимодействию, приводит к значительному повышению прочности связи в системе. В качестве способных к взаимодействию пар были взяты сополимер бутадиена со стиролом и амидом метакриловой кислоты (СКС-15 АМК-15) и хлорсуль-фированный полиэтилен (ХСПЭ), сополимер бутадиена с 2-метил-5-винилпиридином (СКМ ВП-15) и ХСПЭ, сополимер бутадиена со стиролом и хлористым винилиденом (БСХВ-20) и бутадиен-нитрильный каучук (СКН-26). При отсутствии химического взаимодействия, как, например, между СКС-15 АМК-15 и БСХВ-20 или СКН-20 и ХСПЭ, прочность связи при нагревании существенно не изменяется. Данные о зависимости сопротивления расслаиванию в перечисленных системах (в кгс/2,5 см) от условий дублирования каучуков приведены ниже [53]:[31, С.250]

Он широко применяется при изготовлении промежуточных или клеевых прослоек в многослойных резиновых изделиях, способствуя повышению прочности связи между слоями из БК и ненасыщенных каучуков, при изготовлении клеев, предназначенных для крепления резины к металлу, а также в виде добавок для активации вулканизации БК алкилфенолоформальдегидными смолами. Перспективно применение ББК для получения самозатухающих изделий, используемых в строительстве, производстве деталей автомобилей и т.д. Этим условиям удовлетворяет, например, композиция из 80% ББК и 20% неопрена с добавками хлорированного воска и триоксида сурьмы. Основные технологические свойства ББК приведены в табл. 6.8.[20, С.281]

Таким образом, сущность современной физической теории усиления каучука состоит в том, что основными факторами, приводящими к повышению прочности, являются: 1) наличие сил связи (сил адсорбции и адгезии), возникающих между каучуком и наполнителем; 2) образование непрерывной цепочечно-сетчатой структуры наполнителя вследствие сил взаимодействия между частицами наполнителя.[6, С.174]

В результате в волокнах, прошедших стадию ориентационной вытяжки, создается не только ориентация макромолекул, что приводит к повышению прочности волокон на разрыв, но и скрытый распад волокна на макрофибриллы, что обусловливает повышение усталостных свойств, выявляемых при циклических сдвиговых деформациях волокна. На рис. 8а и б приведены примеры распада ориентированного волокна на фибриллярные образования и неориентированного волокна — на бесформенные фрагменты при воздействии набухающей среды.[29, С.174]

Как было показано Е. Е. Сегаловой с сотрудниками [42], частичное разрушение на начальных стадиях кристаллизации может способствовать повышению прочности окончательно образующихся структур твердения минеральных вяжущих, так как предотвращает возникновение больших внутренних напряжений при срастании кристаллов в условиях высоких начальных пересыщений. Тем же целям может служить применение модифицирующих добавок поверхностно-активных веществ, регулирующих скорость твердения и форму образующихся кристаллов.[29, С.27]

Введение в хлопок небольшого числа цианэтиловых групп приводит к резкому повышению его стойкости к действию влаги, гнилостных бактерий, повышению прочности на истирание и улучшению других физико-механических показателей.[5, С.256]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
5. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
6. Белозеров Н.В. Технология резины, 1967, 660 с.
7. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
8. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
9. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
10. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
11. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
12. Мухутдинов А.А. Альбом технологических схем основных производств резиновой промышленности, 1980, 72 с.
13. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
14. Рагулин В.В. Технология шинного производства Изд.3 1981г, 1981, 263 с.
15. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
16. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
17. Бартенев Г.М. Физика полимеров, 1990, 433 с.
18. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
19. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
20. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
21. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
22. Пашин Ю.А. Фторопласты, 1978, 233 с.
23. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
24. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
25. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
26. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
27. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
28. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
29. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
30. Северс Э.Т. Реология полимеров, 1966, 199 с.
31. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
32. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
33. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
34. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
35. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
36. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
37. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
38. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
39. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
40. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
41. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
42. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
43. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
44. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
45. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
46. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
47. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную