На главную

Статья по теме: Окислительной деструкции

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Скорость окислительной деструкции полимеров значительно возрастает в присутствии веществ, легко распадающихся на свободные радикалы (рис. 33 и 34), а также в присутствии ничтожных количеств (сотые и тысячные доли процента от массы полимера) металлов переменной валентности, таких, как Fe, Cu, Mn, Ni. Эти металлы участвуют в окислительно-восстановительных реакциях и ускоряют образование свободных радикалов. Так, в присутствии стеарата железа значительно возрастает скорость окисления натурального каучука (рис. 35). Влияние металлов в данном случае, по-видимому, аналогично их влиянию на процесс цепной полимеризации.[5, С.271]

Механизм окислительной деструкции полимеров различных классов изучен недостаточно. Но влияние химической структуры полимера на его стойкость к окислительной деструкции вырисовывается уже достаточно четко. В ряду углеводородов эту зависимость можно наблюдать при сравнении скоростей окислительной деструкции полиэтилена и полипропилена (рис. 37). Наличие третичного атома углерода в полипропилене резко снижает его стойкость к окислительной деструкции.[5, С.276]

Механизм окислительной деструкции гетероцепных полимеров изучен меньше, чем карбоцепных. Для окислительной деструкции полиамидов, например, по аналогии с окислением низкомолекулярных амидов предложен радикальный механизм, причем процесс проходит через стадию образования гидроперекисей (наличие которых подтверждено[5, С.277]

Вулканизаты склонны к окислительной деструкции, как и исходные полимеры. Отличие заключается лишь в скорости этого процесса, так как с увеличением количества поперечных мостиков между макромолекулами уменьшается содержание двойных связей в полимере и одновременно снижается скорость диффузии кислорода внутрь материала. Исключение составляет только эбонит, который не содержит ненасыщенных групп и потому обладает высокой стойкостью к действию озона, кислорода, растворов азотной кислоты и других агрессивных сред.[2, С.246]

В результате глубокой окислительной деструкции изотактического [48] или аморфного [49] полипропилена получают воскообразные вещества. Окислительная деструкция проходит быстрее в присутствии ди-грет-бутилперекиси при 160° С [49], причем воскообразные эмульсии можно применять в лакокрасочной промышленности. Полимер с низким молекулярным весом (в пределах 900—30000) и температурой плавления не ниже 100° С можно получить при термообработке полипропилена при 310—480°С в те-" чение 30 мин [50]. Известен процесс окисления поли-сс-олефинов, диспергированных в водной фазе, при давлении воздуха до 20 кгс/см2 и температуре 90°С. Водные эмульсии лаурилсульфата натрия и окисленного сополимера пропилена с этиленом пригодны для шлихтования тканей, а также для производства красок и лаков [51].[9, С.130]

Это повышает прочность связи углерод—кремний и придает ей большую устойчивость к тепловым воздействиям и окислительной деструкции. Полимеры с таким строением элементарных звеньев выдерживают длительное нагревание до 333—350° без заметного нарушения связей кремний—кислород и кремний— углерод.[2, С.475]

Относительная скорость изменения характеристической вязкости бутадиен-стирольного каучука в индукционном периоде окисления при термоокислительной деструкции в присутствии меди, марганца и железа и различных антиоксидантов [48][1, С.631]

Известно, что окисление низкомолекулярных углеводородов протекает по свободнорадикалыюму цепному механизму. Многочисленные экспериментальные данные показывают, что таков же механизм окислительной деструкции полимеров. Этим, по-видимому, и объясняется отсутствие строгой избирательности в процессе окислительной деструкции. Действительно, если в первоначальном акте взаимодействия с окислителем участвуют группы, наиболее подверженные окислению, то в последующей цепной реакции, протекающей с передачей неспарен-иого электрона, могут принимать участие другие атомы макромолекулы.[5, С.270]

Аналогичный процесс наблюдается при длительном термическом воздействии на синтетические каучуки. Во время такой вторичной термической полимеризации необходимо предотвращать возможность окислительной деструкции макромолекул, что достигается нагреванием полимера без доступа воздуха или ».«• атмосфере азота.[2, С.238]

Полимерные соединения сравнительно легко" реагируют с кислородом воздуха. Результатом этого процесса является окислительная деструкция макромолекул. Чем выше молекулярный вес полимера, тем в большей степени полимер подвергается окислительной деструкции. Интенсивность этой реакции возрастает под влиянием таких воздействий, которые способствуют активации кислорода и увеличению скорости его диффузии внутрь полимера (ультрафиолетовое облучение, повышение температуры, растворение полимера и др.). Деструкция вызывает разрыв макромоле-кулярных цепей и изменение состава отдельных звеньев цепи.[2, С.15]

Действиесолпечного света не только ускоряет процесс отщепления хлористого водорода, но и последующее окисление полимера. При облучении поливинилхлорида светом кварцевой лампы в течение первых 2 часов наблюдается заметное преобладание процесса окислительной деструкции над процессом «сшивания» цепей, полимер становится более пластичным, вязкость его раствора снижается. При более длительном облучении начинает преобладать процесс образования поперечных связей, возможно, с участием кислородных атомов. После 12—20 час. облучения полимер полностью утрачивает пластичность и растворимость.[2, С.269]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
6. Белозеров Н.В. Технология резины, 1967, 660 с.
7. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
8. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
9. Амброж И.N. Полипропилен, 1967, 317 с.
10. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
11. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
12. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
13. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
14. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
15. Смирнов О.В. Поликарбонаты, 1975, 288 с.
16. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
17. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
18. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
19. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
20. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
21. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
22. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
23. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
24. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
25. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
26. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
27. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
28. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
29. Серков А.Т. Вискозные волокна, 1980, 295 с.
30. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
31. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
32. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
33. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
34. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
35. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
36. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
37. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
38. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
39. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
40. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
41. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
42. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
43. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
44. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
45. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
46. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
47. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
48. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
49. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
50. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
51. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
52. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
53. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
54. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
55. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
56. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
57. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
58. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную