На главную

Статья по теме: Динамических нагрузках

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Рукава высокого давления с металлонавивкой, превосходящие оплеточные по надежности при динамических нагрузках, выпускают диаметрами от 16 до 32 мм на рабочие давления до 30 МП а. Отсутствие перегибов проволоки в каркасе, собираемом путем навивки, позволяет применять проволоку из более прочной и хрупкой'стали и изготовлять рукава, рассчитанные на большие статические напряжения. Однако рукава с металлонавивкой характеризуются большими показателями жесткости и радиуса изгиба, так как при изгибе в зоне растяжения увеличиваются расстояния между проволоками навивки, что может привести к разрушению наружного резинового слоя. По этим причинам рукава навивочной конструкции составляют примерно 'Д общего выпуска рукавов высокого давления.[2, С.245]

С целью повышения прочностных свойств резин, их термоокислительной стабильности, химической стойкости, износостойкости и уменьшения теплообразования при динамических нагрузках в смеси на основе ХСПЭ, содержащие минеральные и органические наполнители, рекомендуется вводить органосиланы (непосредственно и на цеолитах) —• винилтрихлорсилан, метилвинилтрихлор-силан, хлорметилдихлорсилан, нонилтрихлорсилан, диметилдиаце-токсисилан, 1 -аминогексаметилен-б-аминометил ентриэлоксисилан и др. [106, 107]. Влияние ортаносилано-в объясняют повышением гидрофобности наполнителей и увеличением прочности связи эластомер — наполнитель.[7, С.147]

В табл. 6.4 приведены значения прочности соединений, полученных на основе различных комбинаций грунтовки и клея. Величина адгезии в условиях статических нагрузок не всегда коррелирует с величиной адгезии при динамических нагрузках, поэтому, хотя приведенные клеи и пригодны при получении соединений для эксплуатации в динамических условиях, все-таки необходимо провести испытания в условиях, приближенных к реальным.[5, С.123]

Таким образом, кристаллические полимеры разрушаются по механизму, характерному длт твершх ориентированных тел с малодефектной структурой Разрушение аморфно-кристаллических полимеров происходит по аморфной части по механизму, определяемому условиями процесса (температурой и скоростью). Разрушение полимеров при динамических нагрузках. Разрушение полимеров под действием, циклических деформаций происходит в результате динамической усталости или утомления. Динамическая усталость — это снижение прочности под влиянием многократных периодических нагрузок[3, С.335]

Канальная газовая сажа имеет черный цвет. Плотность сажи 1,8 г/см3, насыпная плотность 0,310 кг/л. Канальная сажа — одна из наиболее дисперсных и активных саж, размер ее частиц 25— 35 ммк. Наряду с этим канальная сажа оказывает неблагоприятное влияние на технологические свойства резиновых смесей, повышая их жесткость, усадку и ухудшая каландруемость и шпри-цуемость. Вулканизаты с канальной сажей отличаются пониженной эластичностью и повышенным теплообразованием при динамических нагрузках.[1, С.150]

В области пониженных температур (/) деформации незначительны и обратимы, каучуки находятся в стеклообразном состоянии. Повышение температуры приводит к переходу каучука в высокоэластическое состояние, при котором происходят большие обратимые деформации (//). В области повышенных температур деформируемость каучука резко увеличивается и становится необратимой (///), что отвечает вязкотекучему состоянию каучука. Стеклование зависит не только от температуры, но и от характера нагрузки. Так, при статических нагрузках и динамических нагрузках небольшой частоты температура стеклования ниже, чем при динамических нагрузках большой частоты.[6, С.183]

Английский и американский патенты [64, 65] описывают использование полиуретанов для протекторов шин. Поскольку полиуретаны имеют самое высокое сопротивление истиранию среди резин на основе остальных известных каучуков, то такое использование полиуретанов не является неожиданным. Трудность использования этих патентов заключается в отсутствии совместимости полиуретанов с каучуками общего назначения. Кроме того, не указывается как меняется коэффициент сцепления с дорогой и теплообразование в протекторе при использовании полиуретанов, так как низкий коэффициент трения и высокое теплообразование при динамических нагрузках характерны для большинства известных полиуретанов.[8, С.108]

динамических нагрузках. Особенно это видно на примере применения УП-612 (0,5 масс.ч.) и ПВ-1 (0,5 масс.ч.). Совместное применение ПВ-1 и диафена ФП (1,0 масс.ч.) приводит к сильному синергическому эффекту, выражаемому более чем в десятикратном росте сопротивления многократному сжатию и в двухкратном росте усталостной выносливости при растяжении. Подобный синергический эффект установлен при совместном использовании эпоксидных смол и соединений класса вторичных аминов или четвертичных аммониевых оснований, гидроксилсодержащих модификаторов, алифатических полиаминов [345]. Например, предварительное сплавливание ЭКО-6 и нафтама М в соотношении 1:3 и последующее введение сплава в состав резин на основе СКМС-30 АРКМ-15 повышает их сопротивление термическому старению и многократному растяжению в гораздо большей мере, чем при индивидуальном использовании нафтама М и ЭКО-6. Аналогичный синергический эффект наблюдается и в случае резин из СКИ-3. Индукционный период окисления таких резин возрастает в два-три раза, а коэффициент термического старения растет при замене нафтама на сплав с 1,6 до 4,97.[8, С.290]

* Усталость материалов является результатом временной зависимости прочности при статических или динамических нагрузках. Однако понятие о процессах, происходящих в напряженных резинах, этим не исчерпывается, так как в резинах, особенно при многократных деформациях, происходят ускоренные необратимые изменения структуры, влияющие на прочность, долговечность и другие свойства резины.[9, С.203]

411. Жернаков B.C., Якупов Р.Г. Расчет болтовых и заклепочных соединений при высоких температурах, динамических нагрузках.—М.: Изд-во МАИ, 1997. 218с.[4, С.271]

может быть определена, например, измерением эластичности По отскоку. Так как колебательная энергия атомов увеличивается пропорционально температуре, можно ожидать, что упомянутый временной интервал будет уменьшаться при повышении температуры. Так, эластичность по отскоку полиуретанов и других эластомерных материалов увеличивается с повышением температуры (рис. 10.7). При динамических нагрузках наблюдается выделение тепла, которое, в свою очередь, улучшает эластичность и уменьшает теплообразование.[5, С.203]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Белозеров Н.В. Технология резины, 1967, 660 с.
2. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
5. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
6. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
7. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
8. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.

На главную