На главную

Статья по теме: Многократных деформациях

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Поведение резин при многократных деформациях характеризуется их динамической выносливостью. Выносливост ь— работоспособность резины до момента ее разгружения, выраженная числом циклов прилагаемых деформаций. Используется и понятие динамическая долговечность резин — время, проходящее до их разрушения при эксплуатации в условиях многократных деформаций.[12, С.137]

Разрушение волокон при многократных деформациях часто протекает в две стадии. Элементарные волокна, входящие в одну нить, после разрушения могут иметь как ступенчатые, так и ровные края. Это означает, что сначала некоторые элементарные волокна разрушаются вследствие постепенного развития макро-дефектов, с образованием сколов. Затем, когда количество оставшихся волокон будет мало и нагрузка станет равна пределу прочности оставшегося пучка волокон, произойдет разрыв, аналогичный разрушению при однократном растяжении.[20, С.92]

Работоспособность резин при многократных деформациях находится в прямой зависимости от гистерезисных потерь. Выделение теплоты в результате внутреннего трения при многократных деформациях способствует утомлению резин. Влияние внешней среды при эксплуатации резиновых изделий является одной из важных причин их динамической усталости.[12, С.135]

Обувь, изготовленная с применением термоэластопластов, отличается высоким качеством благодаря упругим свойствам, хорошей износостойкости и выносливости при многократных деформациях изгиба [30]. Кроме того, высокий коэффициент поверхностного трения термоэластопластов обеспечивает безопасность при ходьбе по льду и скользкой дороге [31, 32]. Термоэластопласты используются как добавки при изготовлении шин для легковых автомобилей, а также в автомобилестроении для изготовления автодеталей и звукоизоляционных мембран [33]. Отсутствие вулканизую-[1, С.290]

Оценку ряда свойств производят по эталонам (изменение цвета) или по условным шкалам (например, степень растрескивания). Так как большое количество резиновых изделий работает в атмосферных условиях при многократных деформациях, для испытания резин предложена специальная установка (рис. 6.29). На постоянную статическую деформацию образцов накладывают переменную во времени деформацию с амплитудой, близкой по величине к практически реализуемой в изделиях.[2, С.128]

Комплекс ценных свойств вулканизатов из СКПО указывает на перспективность его применения в резинотехнических изделиях, прорезиненных тканях, озоностойких покрытиях и других изделиях. Высокая прочность, эластичность, малые механические потери при многократных деформациях делает СКПО перспективным для применения также и в шинных изделиях.[1, С.579]

НК хорошо растворяется в бензине, бензоле, хлорированных углеводородах, но нерастворим в спиртах. Обладает высокой клейкостью. Плотность НК — 910-930 кг/м3. Резины на основе натурального каучука имеют высокую эластичность, небольшие гистерезисные потери, низкое теплообразование при многократных деформациях, хорошие адгезионные и когезионные свойства. К недостаткам резин на основе НК относят их низкую масло- и химическую стойкость, старение под действием тепла, солнечного света, кислорода.[2, С.14]

Однако различия в молекулярных параметрах этих каучуков проявляются в ряде динамических характеристик и, особенно, в морозостойкости резин, обусловливаемой микроструктурой полимерных цепей. В числе других отличий сопоставляемых вулканиза-тов следует отметить их более высокие по сравнению с резинами на основе СКД напряжения при удлинении 300% и более низкое теплообразование при многократных деформациях. С другой стороны, вулканизаты на основе СКД-2 характеризуются меньшим сопротивлением разрастанию трещин. Износостойкость всех типов резин практически одинакова и очень высока.[1, С.195]

Под старением понимают самопроизвольное необратимое, обычно неблагоприятное, изменение свойств материала при хранении и эксплуатации, приводящее к потере им работоспособности. Старение является результатом воздействия на полимер энергетических (тепло, свет, радиация, механические напряжения и т. д.) или химических (кислород и другие химически активные вещества) факторов. В зависимости от того, какой из этих факторов является определяющим, различают тепловое, световое и другие виды старения. В эксплуатационных условиях на изделия обычно действуют одновременно несколько факторов, в результате чего через некоторое время происходит потеря их работоспособности. Практически важным случаем старения является одновременное воздействие механических напряжений и агрессивной среды, в частности утомление при многократных деформациях в активной среде, разрушение при трении и износе в агрессивной среде, химическая релаксация.[2, С.125]

Кроме того, разрушение эластомеров при многократных деформациях ускоряется механически активированными химическими процессами деструкции полимерных цепей.[3, С.329]

Испытания образцов на выносливость при многократных деформациях растяжения на машине МРС-2 или УР-500 с шатунно-кривошипным механизмом не позволяют точно воспроизвести условия эксплуатации всех резиновых смесей. При испытаниях скорость деформации дважды меняется от 0 до определенной величины, а изменение скорости деформации зависит от частоты и величины деформации образца. При этом нельзя менять продолжительность «отдыха» между двумя деформациями и создавать самопроизвольное сокращение образцов. Разработка приборов[12, С.140]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Белозеров Н.В. Технология резины, 1967, 660 с.
6. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
7. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
8. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
9. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
10. Рагулин В.В. Технология шинного производства Изд.3 1981г, 1981, 263 с.
11. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
12. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
13. Блаут Е.N. Мономеры, 1951, 241 с.
14. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
15. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
16. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
17. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
18. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
19. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
20. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
21. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
22. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
23. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
24. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
25. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
26. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
27. Золотарева К.А. Вспомогательные вещества для полимерных материалов, 1966, 177 с.
28. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
29. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
30. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
31. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
32. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
33. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
34. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
35. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
36. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
37. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
38. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
39. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
40. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
41. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
42. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
43. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
44. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.

На главную