На главную

Статья по теме: Химическая релаксация

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Более сложным случаем является химическая релаксация серных вулканизатов ненасыщенных каучуков, в которых имеется сложный набор различных типов поперечных связей. Тобольский считает, что в этих вулканизатах также происходит преимущественно окислительный разрыв цепи полимера и лишь в некоторых случаях—разрыв поперечных связей4". Он мотивирует это тем, что у бутилкаучука и БСК скорости химической релаксации экстрагированных бессерных и серных вулканизатов практически равны, а для НК—отличаются только в 4 раза. В то же время для вулканизата модифицированного дивинилового каучука (полибутадиена, в котором двойные связи замещены на 97% группами —SCH:.) он допускает значительно больший разрыв поперечных связей, так как скорости релаксации для серного и бессерного вулканизатов этого каучука отличаются более чем в 20 раз. Сле-гует учесть, что результаты, полученные Тобольским, относятся к вулканизатам, в которых преимущественно содержались прочные поперечные связи С—S—С и С—С, а не лабильные полисульфидные связи.[7, С.253]

Воздействие тепла и кислорода на напряженные полимеры приводит к деструкции полимерных молекул, следствием которой являются химическая ползучесть, химическая релаксация и уменьшение долговечности. Имеются стандартные методы испытаний на определение ползучести растянутых образцов резины при старении (Р = const), релаксации напряжения и остаточной деформации в сжатых образцах (е = const). 130[1, С.130]

Принципиальным отличием трехмерных полимеров от линейных является наличие химических узлов, практически не разрушающихся при умеренных температурах и нагрузках; разрушение этих узлов ведет к разрушению полимера. Появление химических узлов делает невозможным движение всей макромолекулы или ее достаточно больших частей, т. е. существенная часть молекулярных движений, возможных в линейных полимерах, в трехмерных полностью вырождена. В трехмерных полимерах может проходить химическая релаксация, связанная с медленной перестройкой сетки химических связей под действием внешней нагрузки [1]. При большой плотности узлов могут выродиться и сегментальные движения, что проявляется в исчезновении области высокоэластического состояния. При рассмотрении релаксационных процессов в эпоксидных полимерах следует также иметь в виду, что, как было показано в предыдущих разделах этой главы, структура, замороженная при переходе в стеклообразное состояние, зависит от скорости охлаждения в области Тс, механических деформаций и других факторов [38].[4, С.64]

В результате химического сшивания эластомеров и отверждения смол (олигомеров) образуется пространственная сетка из более прочных химических узлов. В области коротковременной части шкалы (клиновидная часть релаксационного спектра) основную роль играют сегменты, тогда как в ее длинновременной части (где функция распределения напоминает потенциальный ящик) большее значение имеют физические узлы молекулярной сетки. При еще больших временах наблюдения проявляется подвижность химических узлов (химическая релаксация). Для недеформированного полимера процессы разрыва и восстановления физических узлов при тепловом движении сегментов цепей взаимно уравновешиваются, а после приложения нагрузки равновесие нарушается и начинается процесс направленной перегруппировки узлов и цепей. Из-за наличия широкого набора времен релаксации, охватывающих около 20 десятичных порядков, практически все физические и химические свойства полимеров связаны с протекающими в них процессами релаксации [83].[2, С.124]

В то время как резолы дают устойчивые к повышенным температурам сетки, мостики вулканизованного каучука способны распадаться и перегруппировываться (рекомбинировать) при 120° С и выше, что проявляется в релаксации напряжения при длительной выдержке растянутых резиновых полос в атмосфере азота. Быстрее всего происходит распад, когда в образце преобладают полисульфидные связи, а медленнее всего, если в вулканизате много связей С—С и С—S—С (энергия связи соответственно 347 и 228 кДж/моль). Такая «химическая релаксация», которая сопровождается возрастанием скорости ползучести (подобные явления А. Тобольский назвал хемореологическими), удовлетворительно описывается экспоненциальной зависимостью[5, С.618]

Под старением понимают самопроизвольное необратимое, обычно неблагоприятное, изменение свойств материала при хранении и эксплуатации, приводящее к потере им работоспособности. Старение является результатом воздействия на полимер энергетических (тепло, свет, радиация, механические напряжения и т. д.) или химических (кислород и другие химически активные вещества) факторов. В зависимости от того, какой из этих факторов является определяющим, различают тепловое, световое и другие виды старения. В эксплуатационных условиях на изделия обычно действуют одновременно несколько факторов, в результате чего через некоторое время происходит потеря их работоспособности. Практически важным случаем старения является одновременное воздействие механических напряжений и агрессивной среды, в частности утомление при многократных деформациях в активной среде, разрушение при трении и износе в агрессивной среде, химическая релаксация.[1, С.125]

Как известно [7], эластомеры характеризуются двумя основными релаксационными механизмами. Один из них, а-процесс '(рис. 12.6), связан с молекулярной подвижностью свободных сегментов и цепей, не входящих в микроблоки надмолекулярных структур. Он ответствен за релаксационные процессы в переходной области от стеклообразного к высокоэластическому состоянию и за быструю высокоэластическую деформацию выше температуры стеклования. Другой механизм относится к Я-процессам (ki, K2 и Яз), наблюдаемым на высокоэластическом плато и ответственным за медленную высокоэластическую деформацию. Эти релаксационные механизмы объясняются термофлуктуационной природой различных типов микроблоков (упорядоченных микрообластей) в эластомерах. Процессы Я-релаксации характеризуются различными временами релаксации с одной и той же энергией активации. В сшитых эластомерах кроме а- и Я-процессов при высоких температурах наблюдается химическая релаксация (б-процесс), а в полярных эластоме-[2, С.341]

Релаксационная спектрометрия полимеров в настоящее время находится в начальной стадии развития, но ей принадлежит, по-видимому, большое будущее. Важны развитие и разработка новейших методов получения непрерывных и дискретных спектров и применение их для расчетов и прогнозирования вязкоупругих свойств полимерных материалов. Очевидно, что "разработка современных методов расчета и прогнозирования невозможна без знания всех релаксационных механизмов и их кинетических характеристик для различных полимерных материалов и особенно для тех, которые находятся в условиях длительной эксплуатации. В настоящее время можно считать установленными основные релаксационные перег ходы в полимерах, которые необходимо учитывать при прогнозировании их свойств. В частности, это относится к новым данным по релаксационным переходам (а'-, Кг, А,2-, К3- и ф-переходы), находящимся по шкале времен релаксации между а-процессом (стеклованием) и 8-процессом (химической релаксацией). Для прогнозирования эксплуатационных вязкоупругих свойств эластомеров при относительно низких температурах наиболее важную роль играют медленные физические процессы релаксации (К- и ф-процессы), так как в течение длительного промежутка времени (до 50 лет) химической релаксации практически не наблюдается. Однако при высоких температурах для длительного прогнозирования основную роль начинает играть химическая релаксация.[2, С.144]

Химическая релаксация 124, 139 Химические единицы цепей 12[2, С.391]

Химическая релаксация может также происходить вследствие разрушения и восстановления связей, легко протекающих под влиянием катализаторов при обычных температурах и лежащих в основе явления хладотекучести. Так, в тиоколах разрушение серных связей катализируется загрязнениями ионного характера (меркаптиды40, кислоты Льюиса), в резинах из полисилоксано-вого каучука разрушение связей Si—О катализируется парами воды, СО2, щелочами и кислотами и не зависит от присутствия кислорода40'41. Под действием этих катализаторов может ускоряться и разрушение поперечных солевых связей в резинах из карбоксилсодержащих каучуков40, вулканизованных окислами металлов. Образование небольшого количества более прочных поперечных связей в этих каучуках с помощью вулканизации тиурамом или у-излучением приводит к резкому замедлению спада напряжения42, аналогично действию более прочных связей в вулканизатах, содержащих лабильные полисульфидные связи.[7, С.254]

Важнейшие механохимические -превращения сеток, например «химическое резагаие», «химическая релаксация», «химическое течение», «деструктивное течение», рассматриваются по мере необхо-[6, С.154]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
4. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
7. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
8. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
9. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
10. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.

На главную