На главную

Статья по теме: Результате химического

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В результате химического инициирования свободный радикал становится концевой группой растущей полимерной цепи.[1, С.219]

В результате химического сшивания эластомеров и отверждения смол (олигомеров) образуется пространственная сетка из более прочных химических узлов. В области коротковременной части шкалы (клиновидная часть релаксационного спектра) основную роль играют сегменты, тогда как в ее длинновременной части (где функция распределения напоминает потенциальный ящик) большее значение имеют физические узлы молекулярной сетки. При еще больших временах наблюдения проявляется подвижность химических узлов (химическая релаксация). Для недеформированного полимера процессы разрыва и восстановления физических узлов при тепловом движении сегментов цепей взаимно уравновешиваются, а после приложения нагрузки равновесие нарушается и начинается процесс направленной перегруппировки узлов и цепей. Из-за наличия широкого набора времен релаксации, охватывающих около 20 десятичных порядков, практически все физические и химические свойства полимеров связаны с протекающими в них процессами релаксации [83].[2, С.124]

В результате химического взаимодействия коллоидных металлов с полимерами осуществляется сшивание полимера, например происходит отверждение эпоксидной смолы [74]. Несомненно, вопросы химического взаимодействия коллоидных металлов с полимерами, содержащими активные функциональные группы, имеют самое непосредственное отношение к проблемам адгезии. Именно эпоксидные смолы и карбоксилсодержащие полимеры обнаруживают, как правило, высокую адгезию к металлам (см. гл. VIII).[11, С.36]

Отверждение вспененных вязких растворов в результате химического взаимодействия между их компонентами — широко распространенный прием получения пенопластов. Он используется при производстве пенополиуретанов, пенопластов на основе фенолформальдегидных смол. Получаемые таким образом материалы обычно имеют объемный вес порядка 0,05—0,10 г/сж3; юни обладают сравнительно грубой пористостью и, как правило, невысокой влагоемкостью.[10, С.95]

Так как основные и побочные реакции происходят в химически связанных между собой звеньях макромолекулы, исключено полное фракционное разделение продуктов реакции по химическому сое--таву. Образующиеся в результате химического превращения высокомолекулярные вещества отличаются не только по количеству прореагировавших функциональных групп, но и по расположению этих групп, что приводит к появлению огромного числа изомеров. Маловероятно, что вступят в реакцию все функциональные группы полимерной молекулы, ибо одни находятся в более благоприятных условиях, чем другие. В результате получится своего рода сополимер со значительной композиционной неоднородностью, в котором имеются звенья, образовавшиеся вследствие основной или побочной реакции, и звенья, оставшиеся без изменения (разнозвенный полимер).[8, С.598]

При варке целлюлозы роль экстрактивных веществ может проявиться в снижении выхода целлюлозы, увеличении расхода химикатов, усложнении процесса делигнификации, а также в появлении так называемых смоляных затруднений. Снижение выхода целлюлозы из-за растворения экстрактивных веществ обычно невелико, но есть древесные породы (лиственница, дуб) с высоким содержанием водорастворимых соединений. Расход химикатов повышается в результате химического взаимодействия экстрактивных веществ с варочными реагентами. В щелочных варках часть гидроксида натрия расходуется на омыление жиров и носков и на взаимодействие со свободными кислотами и фенольными соединениями. С экономической точки зрения это частично компенсируется получением продуктов переработки сульфатного мыла. При сульфитных варках некоторые экстрактивные вещества сульфируются (флавоноиды, лигнаны). Дигидрокверцетин, обладающий восстанавливающими свойствами подобно сахарам (см. 11.11.1), в растворах гидросульфита окисляется до кверцетина. Кверцетин плохо растворяется в воде и осаждается на волокнах, приводя к пожелтению целлюлозы.[6, С.538]

Мономерные звенья могут иметь различные пространственные конфигурации в полимерной цепи. Мономерное звено, включающееся в растущую цепь, приобретает определенную пространственную конфигурацию либо в результате данного элементарного акта роста, либо после присоединения последующего мономерного звена к активному центру, что зависит от механизма полимеризации. В дальнейшем образовавшаяся конфигурация звена в цепи может быть изменена только в результате химического превращения макромолекулы. Если полимеризация происходит так, что из ряда возможных последовательностей конфигураций при построении макромолекул в цепи повторяется только одна конфигурация мономерного звена либо несколько конфигураций, чередующихся по определенному закону, то полимеризация называется стереоспеци-фической. Полимеры, образующиеся в результате стереоспецифи-ческой полимеризации, называются стереорегулярными.[3, С.23]

Подводя итоги исследований в области изучения механизма усиления и взаимодействия каучуков с термореактивными смолами, следует отметить, что выполненные до настоящего времени исследования не позволяют в полной мере сформулировать единую схему усиления каучуков смолами ввиду многообразия ло-тенциально возможных реакций взаимодействия каучуков и смол. Тем не менее можно отметить, что в большинстве случаев в результате совмещения каучуков с термореактивными смолами создается двухфазная система, в которой в основной массе каучука или модифицированного каучуко-смоляного полимера, полученного в результате химического взаимодействия каучука со смолой, диспергирована вторая фаза смоляных или каучуко-смоляных высокоорганизованных структур, служащая активным наполнителем каучуковой фазы и обеспечивающая усиление.аналогично случаю усиления каучука неорганическими наполнителями.[7, С.144]

Переход от линейной конфигурации к сетчатой в результате химического сшивания макромолекул приводит к некоторому росту температуропроводности.[4, С.364]

Модификация поверхности полиэтилена фотохимическим хлорированием также приводит к значительному повышению адгезии к нему полярных полимеров [7]. В результате химического хлорирования происходит замещение атомов водорода в цепи и присоединение хлора по двойным связям.[11, С.373]

Обозначим через (А ... В) стационарную концентрацию нар молекул А и В. Скорость образования пар определяется формулой Смолуховского (67). Пары исчезают или в результате химического взаимодействия молекул пар друг с другом (константа скорости ki) или в результате диссоциации пары. Константа скорости этого последнего процесса равна[12, С.29]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
10. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
11. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
12. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
13. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
14. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
15. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
16. Гастров Г.N. Конструирование литьевых форм в 130 примерах, 2006, 333 с.
17. Фабрикант Т.Л. Асбовинил и его применение в химической промышленности, 1958, 80 с.

На главную