На главную

Статья по теме: Полимеризации уменьшается

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В результате сбрыва цепи снижается концентрация свободных радикалов в реакционной смеси, псэтсму скорость полимеризации уменьшается. Вещества, участвующие в передаче цепи с образованием радикалов, не инициирующих реакцию полимеризации, носят название замедлителей или ингибиторов реакции полимеризации.[2, С.131]

Как было установлено исследованиями, проведенными во ВНИИполимер, молекулярная масса полихлоропрена и скорость полимеризации уменьшается с увеличением содержания углеродных атомов в меркаптанах, а также с увеличением разветвление-сти их структуры при переходе от первичных к вторичным и третичным изомерам меркаптанов.[1, С.375]

С началом полимеризации температура реакционной смеси повышается до 55—60 °С, и прозрачный раствор становится мутным. По мере протекания реакции скорость полимеризации уменьшается, и система охлаждается до 50 °С. За 45—55 мин содержимое колбы превращается в коричневую кашицеобразную массу. Через 60 мин после начала реакции полимеризацию прекращают добавлением 30 мл «-бутанола, в результате чего реакционная смесь сразу же становится белой. Примерно через 10 мин в колбу добавляют 150 мл смеси метанола и соляной кислоты (2:1) и перемешивание продолжают еще 10 мин. Полимер фильтруют с отсасыванием, тщательно промывают метанолом, затем ацетоном и сушат в вакуумном шкафу при 50 °С; выход составляет около 50 г.[9, С.156]

Влияние температуры. На основании исследований, проведенных во ВНИИполимер о зависимости структуры полимеров хлоропрена от температуры путем определения молекулярно-массового распределения полимеров (методами ИКС и ЯМР), содержания кристаллической и аморфной фаз (методом рентгено-структурного анализа) было установлено, что с повышением температуры полимеризации происходит снижение регулярности структуры полимеров и уменьшение их средней молекулярной массы. Одновременно с повышением температуры полимеризации уменьшается скорость кристаллизации (рис. 1). При пониженных температурах полимеризации, тенденция к кристаллизации сохраняется в вулканизатах, вызывая увеличение их твердости и уменьшение эластичности [18]. На основании данных о влиянии температуры на свойства полимеров хлоропрена была принята в качестве оптимальной температура полимеризации 40 °С.[1, С.372]

Скорость полимеризации постепенно возрастает даже при неизменных условиях проведения реакции, но после превращения ,30—40% мономера в полимер становится примерно постоянной. В конце процесса (при степени превращения 75—80%) начинается заметное уменьшение скорости полимеризации. Это явление, носящее название гель-эффекта, наблюдается во всех случаях, когда образующийся полимер нерастворим в исходном мономере. Оно объясняется тем, что осаждающиеся мельчайшие частицы полимера поглодают часть мономера (и дальнейшая полимеризация протекает в набухших частицах полимера. В такой системе, отличающейся большой вязкостью, скорость обрыва цепей в результате взаимодействия двух макрорадикалов снижается. Для процесса полимеризации хлористого винила характерны реакции передачи цепи через мономер и полимер. При передаче цепи через полимер образуются разветвленные малоподвижные макрорадикалы с увеличенной длительностью жизни. Реакция дальнейшей полимеризации, инициируемая такими радикалами, протекает с ускорением (вследствие уменьшения скорости реакции обрыва). Таким образом, снижению скорости обрыва роста макрорадикалов поливинилхлоридг путем соединения их друг с другом препятствует высокая вязкость среды, в которой протекает процесс полимеризации (набухшие в мономера полимерные частицы), и малая вероятность столкновения двух растущих макрорадикалов. Малая скорость обрыва приводит к увеличению общей скорости полимеризации. По мере полимеризации мономера в набухших полимерных частицах концентрация его в полимере постепенно снижается и оэщая скорость полимеризации уменьшается.[2, С.262]

Фордхем и Вильяме [330] исследовали совместную полимеризацию этих соединений при 12,8° и установили, что при увеличении концентрации а-метилстирола скорость полимеризации уменьшается, причем начальная скорость реакции максимальна при концентрации его, равной 50%; с увеличением концентрации а-метилстирола уменьшается молекулярный вес образующегося полимера.[20, С.507]

Как видно из приведенного уравнения, чем выше теплота полимеризации или чем ниже ДЯ°, тем больше К и значение fep по сравнению с fe_p. Следовательно, с возрастанием теплоты полимеризации уменьшается склонность полимера к деполимеризации. И действительно, выход мономера при деполимеризации полиметил-метакрилата (—ДЯ = 42ч-54[10, С.633]

Влияние концентрации. С разбавлением системы вероятность внутримолекулярной реакции циклизации, естественно, не изменяется, в то время как вероятность межмолекулярной реакции полимеризации уменьшается, что приводит к смещению равновесия:[4, С.129]

Влияние концентрации. С разбавлением системы вероятность внутримолекулярной реакции циклизации, естественно, не изменяется, в то время как вероятность межмолекулярной реакции полимеризации уменьшается, что приводит к смещению равновесия:[4, С.172]

На рис. 50 показана зависимость скорости полимеризации от глубины превращения для различных температур полимеризации. При низких температурах после достижения глубины полимеризации —50% скорость полимеризации уменьшается, очевидно, вследствие уменьшения скорости роста цепи, как это видно из табл. 31. Эффект возрастания скорости с глубиной полимеризации уменьшается при увеличении температуры полимеризации вследствие возрастания коэффициентов диффузии. При 759 С кривая полимеризации приближается к нормальному типу. Большие значенияЕр и Е0 при глубокой полимеризации характеризуют температурную зависимость вязкого течения, а не процесс взаимодействия радикалов друг с другом или с молекулами мономера[12, С.179]

Степень полимеризации наиболее сильно влияет на вязкость конц. р-ров Ц. э. при низких значениях градиента скорости (или напряжения сдвига). По мере увеличения градиента различие между вязкостями р-ров Ц. э. с различной степенью полимеризации уменьшается и при очень больших градиентах становится незначительным. Полидисперсность также влияет на реологич. свойства р-ров. Так, при напряжениях сдвига порядка 102 н/м2 (103 дин/см2) вязкости р-ров нитратов целлюлозы, имеющих параметры неоднородности Шульца U—i и U=2 (см. Молекулярно-массовое распределение), различаются более чем в 2 раза.[17, С.433]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
9. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
12. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
13. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
14. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
15. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
16. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
17. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
18. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
19. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
20. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
21. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
22. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
23. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
24. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
25. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
26. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
27. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную