На главную

Статья по теме: Образованием радикалов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Затем активированный мономер М распадается гомолитически с образованием радикалов, способных инициировать полимери-[4, С.16]

Разрыв полимерных цепей под влиянием механических воздействий сопровождается образованием радикалов на разорванных концах цепей. Используя радикалы обработанных таким образом полимеров для инициирования полимеризации мономера, синтезировали блок-сополимеры. Когда смесь двух полимеров подвергается механическому воздействию, блок-сополимеры образуются в результате взаимодействия макрорадикалов различной химической природы. Практически полученные продукты представляют собой смеси привитых и блок-сополимеров, поскольку в некоторых случаях в результате реакции передачи цепи свободный радикал образуется не на конце полимерной цепи. Кроме того, поскольку стирол является единственным мономером, при полимеризации которого, как было показано, обрыв цепи происходит в результате рекомбинации, обрыв цепи двух полимерных радикалов должен происходить в результате диспропорционирования с образованием одной полимерной цепи, содержащей на конце двойную связь. При сополимеризации этой цепи со свободным полимерным радикалом образуется привитой сополимер.[17, С.278]

Используя методы радиационной привитой сополимеризации, введение в полимер групп, распадающихся с образованием радикалов, применяя мягкие окислители или смеси перекисных инициаторов с восстановителями удается осуществить М. готовых полимерных материалов и изделий. Так, промышленное значение получил способ прививки полиакрилонитрила к вискозному штапельному волокну путем его пропитки водорастворимой инициирующей системой (Н2О2+ Fe+2) и последующим взаимодействием с мономером. Такое волокно сочетает свойства гидратцеллюлозных волокон (высокая гидрофильность, накрашиваемость, устойчивость к истиранию и др.) со свойствами, типичными для полиакрилонитрильных волокон (шерстеподобный гриф, устойчивость к действию микроорганизмов, высокая светостойкость и др.).[18, С.137]

Используя методы радиационной привитой сополимеризации, введение в полимер групп, распадающихся с образованием радикалов, применяя мягкие окислители или смеси перекисных инициаторов с восстановителями удается осуществить М. готовых полимерных материалов и изделий. Так, промышленное значение получил способ прививки полиакрилонитрила к вискозному штапельному волокну путем его пропитки водорастворимой инициирующей системой (Н202+ Fe+2) и последующим взаимодействием с мономером. Такое волокно сочетает свойства гидратцеллюлозных волокон (высокая гидрофильность, накрашиваемость, устойчивость к истиранию и др.) со свойствами, типичными для полиакрилонитрильных волокон (шерстеподобный гриф, устойчивость к действию микроорганизмов, высокая светостойкость и др.).[24, С.135]

Если облучению подвергнуть мономер, растворенный в растворителе, молекулы которого легко разрушаются при облучении с образованием радикалов (например, СС14), то .процесс полимеризации ускоряется (рис. 47). Образовавшиеся в результате распада растворителя радикалы присоединяются к молекулам мономера, инициируя их:[3, С.96]

В результате сбрыва цепи снижается концентрация свободных радикалов в реакционной смеси, псэтсму скорость полимеризации уменьшается. Вещества, участвующие в передаче цепи с образованием радикалов, не инициирующих реакцию полимеризации, носят название замедлителей или ингибиторов реакции полимеризации.[3, С.131]

Для образования вулканизатов на основе перфторполимеров могут быть также использованы серебряные соли перфторирован-ных кислот. Будучи термически малостабильными, при нагревании они выделяют металлическое серебро и двуокись углерода, с образованием радикалов по атому углерода. Радикалы рекомбини-руются, приводя к образованию прочных углерод-углеродных связей. Известны способы введения в перфторированные сополимеры сульфо-, циано- и других функциональных групп.[1, С.511]

Происхождение свободных радикалов в различных препаратах лигнина является предметом дискуссии. Свободные радикалы могут возникать в результате механической деструкции лигнинной сетки при размоле древесины, при термической гемолитической деструкции, в том числе при высоких температурах щелочных варок. В гидролизном лигнине с использованием спектрометра ЭПР высокого разрешения установлено существование радикалов с системой сопряженных двойных связей, содержащей неспаренный электрон на углеродных атомах. При обработке гидролизного лигнина водным раствором щелочи концентрация парамагнитных центров значительно увеличивается. Спектр ЭПР указывает на локализацию неспаренного электрона на атомах кислорода и соответствует спектру ион-радикалов типа о-бензосемихинона (см. рис. 12.5). В настоящее время преобладает точка зрения, что основная масса свободных радикалов возникает в результате биологического и химического окисления лигнина с образованием радикалов семихинонного типа (в том числе ион-радикального). В качестве промежуточных продуктов могут быть феноксильные радикалы. В щелочной среде интенсивность сигнала ЭПР увеличивается, тогда как метилирование лигнина уменьшает сигнал ЭПР. Ферментативное или щелочное деметилирование приводит к появлению пирокатехиновых структур, которые могут окисляться до о-бензо-хинонов. Из этих двух типов структур и образуются бензосемихинонные анион-радикалы. К образованию парамагнитных центров могут привести и реакции одноэлек-тронного переноса, протекающие в качестве побочных при кислотных и щелочных обработках лигнина.[8, С.420]

ПВС с разрывом макроцепи и образованием радикалов на кон-[7, С.46]

Разрыв по этой связи благоприятствует образованию мономера. Поэтому сложность продуктов объясняется образованием радикалов в результате разрыва связей между мономерными звеньями и возможностью дальнейшего участия этих радикалов в реакции передачи цепи через различные атомы водорода мономерных звеньев.[15, С.71]

Все вещественные инициаторы можно разделить на две группы: 1) азосоодинения, перекиси и др. вещества, распадающиеся с образованием радикалов; эти инициаторы, как правило, не влияют на направление реакции и распределение выходов теломеров (при заданном соотношении исходных реагентов); 2) соединения переходных металлов (галогениды, хслаты, я-комплоксы, карбонилы) в сочетании с активными растворителями — спиртами, аминами, сложными эфирами, димстилформамидом и др.; подобные системы оказывают влияние на распределение выходов отдельных теломеров и иногда на направление реакции.[19, С.295]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
5. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
6. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
7. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
8. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
9. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
10. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
13. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
14. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
15. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
16. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
17. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
18. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
19. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
20. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
21. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
22. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
23. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
24. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
25. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
26. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
27. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную