На главную

Статья по теме: Электронной микроскопии

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При изучении надмолекулярной структуры полимеров методом электронной микроскопии наименьшие искажения получаются при травлении полимеров в плазме высокочастотного кислородного разряда. Это дает возможность оценить соотношение между объемом, занимаемым упорядоченными микрообластями (микроблоками структуры) независимо от их природы, и неупорядоченной частью полимера (свободные цепи и сегменты), а также средний линейный размер микроблоков. Например, для эластомеров при комнатной температуре характерна объемная доля микроблоков примерно 20%. Это значит, что 80% по объему занимают свободные цепи и сегменты, ответственные за высокую эластичность этих материалов. Средний линейный размер структурных микроблоков 10—30 им, что соответствует типичным размерам частиц в коллоидных системах. Малое различие в плотностях упорядоченных и неупорядоченных микрообластей (1—2%) является причиной того, что применение дифракционных методов для исследования структуры аморфных эластомеров не всегда эффективно. Некоторые полимеры в блоке характеризуются глобулярной структурой (рис. 1.12) с размерами микроблоков 12—35 нм.[5, С.27]

Результаты исследований методом рассеяния рентгеновских лучей и методом электронной микроскопии позволяют предположить, что пустоты, содержащиеся в трещине серебра, распределены в виде взаимосвязанных полостей сферической формы, типичные размеры которых 10—20 нм. На кривых напряжение—деформация, полученных для материалов с трещинами серебра, выявляется предел вынужденной эластичности, при превышении которого начинается течение материала, обратимое до значений деформации 40—50% при напряжении 41—55 МПа. При возврате к нулевому напряжению материал с трещиной серебра характеризуется обратимостью ползучести с замедляющейся скоростью[2, С.365]

Резиноподобные свойства термоэластопластов в невулканизованном состоянии определяются их двухфазной структурой, образуемой за счет ассоциации блоков одного и того же вида [2]. С помощью электронной микроскопии и малоуглового рассеяния рентгеновских лучей установлена высокая степень регулярности структуры этих полимеров [3]. При содержании диеновой части до 50% (масс.) эластичные диеновые блоки образуют непрерывную фазу, а стекловидные блоки винилароматических соединений диспергированы в ней в виде отдельных доменов размером порядка[1, С.283]

Экспериментальные методы, применяемые для определения и характеристики структуры полимерных цепей и их совокупностей, упоминались в общем обзоре гл. 1. Дополнительную информацию по дифракции рентгеновских лучей [3], рассеянию нейтронов [4—6], электронов и света [4, 52, 53], оптической и электронной микроскопии [3, 14Ь], термическим [3, 54] и вязкоупругим свойствам [14с, 55—57] и методу ядерного магнитного резонанса (ЯМР) [3] можно получить из источников, указанных в списке литературы к данной главе. В гл. 5 и 6 соответственно будут рассмотрены методы инфракрасного поглощения (ИКС) и ЭПР.[2, С.35]

На рис. 9.19—9.21 воспроизводятся электронные микрофотографии реплик поверхностей разрушения ПА-6, полученного кристаллизацией под давлением [202]. На микрофотографиях видны стопы ламелл толщиной до 700 нм. На основании обширных исследований методами инфракрасной спектроскопии, широкоуглового рассеяния рентгеновских лучей и методами электронной микроскопии авторы данной работы пришли к выводу, что ламеллы состоят из вытянутых цепей. Согласно их предположению (рис. 9.22), трещина преимущественно может распространяться либо вдоль плоскостей (010) (в которых располагаются концы цепей, а также примеси, отторгнутые фронтом роста), либо вдоль плоскостей (002) —в слоях водородных связей ламелл. В обоих процессах не происходит разрыва связей основной цепи или водородных связей.[2, С.393]

Все используемые в технике кристаллизующиеся материалы являются поликристаллитами. Иначе говоря, все они состоят из множества кристаллических областей, каждая из которых граничит с другими кристаллическими или аморфными областями. Поэтому морфология кристаллизующихся материалов носит очень сложный характер. По этой причине основные характеристики их изучают на монокристаллах. Полимеры не являются исключением. Полимерные монокристаллы выращивают из слабоконцентрированных растворов. При температуре кристаллизации способный к кристаллизации полимер высаживается из раствора в виде крошечных пластинок (ламелей), имеющих все характерные черты кристалла, например регулярные грани (видны при электронной микроскопии), и дающих дифракционные картины, присущие ^монокристаллам. Необходимость применения электронного микроскопа или оптического микроскопа с большим увеличением обусловлена очень малыми размерами полимерных кристаллов: максимальные размеры монокристалла ПЭВП составляют несколько мкм, в то время как его толщина очень невелика—порядка 100 А. Монокристаллы других полимеров имеют форму полых пирамид, которые часто закручиваются по спирали, что свидетельствует о существовании винтовых дислокаций. Детальное рассмотрение природы монокристаллов можно найти у Джейла [5], Келлера [6] и Шульца [7]. Наиболее важная и неожиданная особенность монокристаллов состоит в наличии практи-[3, С.47]

Низким значениям / при испытаниях ПТФЭ предшествовало значение / ?=> 0,2. В области максимума довольно большие частицы ПТФЭ (размером порядка 104 А) переносятся на стеклянную поверхность. Непосредственно после максимума значение / снижается до 0,С6, а на поверхности стекла образуется полимерная пленка толщиной 30—100 А. Если повторить эксперимент с тем же полимерным образцом, сдвинув стеклянное контртело так, чтобы образец скользил по свежей поверхности, то на ней сразу же образуется тонкая пленка, при этом f = f — 0,06. Наконец, если повернуть полимерный образец на 90°, он будет вести себя как совершенно свежий образец с таким же высоким значением статического коэффициента трения, и в процессе приработки вновь будет наблюдаться отщепление крупных частиц. Данные оптической и электронной микроскопии показывают, что в соответствии с мнением Тейбора с момента отщепления частиц на поверхности стекла начинает формироваться тонкий, сильно ориентированный слой ПТФЭ. В дальнейшем трение определяется величиной силы, необходимой для вытягивания молекул из тела полимерного образца. Перерыв в испытаниях не влияет на этот процесс. Однако после изменения направления движения на 90° он прекращается, и его надо инициировать заново.[3, С.89]

Несмотря на то что доказательства существования доменной структуры, полученные методом электронной микроскопии, могут быть не свободны от экспериментальных ошибок, предположения о наличии небольших упорядоченных областей в аморфных полимерах невозможно отвергнуть полностью.[3, С.68]

Представленная схема хорошо согласуется со многими экспериментальными фактами, обнаруженными методами электронной микроскопии и РСА в чистых металлах, подвергнутых интенсивной деформации: равноосной формой зерен, значительными искажениями кристаллической решетки, наличием дислокаций высокой плотности в границах зерен и т. д. Вместе с тем закономерности структурных изменений и механизм формирования наноструктур в различных сплавах при интенсивных деформациях остаются еще мало изученными, и их выявление остается актуальной проблемой, требующей дальнейших исследований.[9, С.47]

Изучение структуры полимеров может осуществляться различными физическими методами, в том числе методом электронной микроскопии, который позволяет оценивать некоторые особенности надмолекулярного строения полимеров в диапазоне размеров от нескольких десятков ангстрем до сотен микрон. Электронная микроскопия обычно применяется в совокупности с другими методами исследований, такими, как оптическая микроскопия, дифракция рентгеновых лучей и электронография.[6, С.109]

Отметим, что близкие результаты, указывающие на значительные упругие деформации в приграничных областях, были получены недавно в работе [119], где наблюдали и измеряли методом просвечивающей электронной микроскопии кривизну кристаллической решетки вблизи границ зерен, а также переменную разори-ентацию вдоль индивидуальных границ в Ni, подвергнутом ИПД. В этой работе, используя изгибные контуры экстинкции, исследовали «структурную» кривизну решетки, которая является кривизной кристаллографических плоскостей, параллельных волновому вектору, в отличие от обычной «изгибной» кривизны, относящейся к плоскостям, перпендикулярным волновому вектору. Вследствие этого «структурная» кривизна отражает реальную структуру объемных образцов, поскольку плоскости, параллельные волновому вектору, практически не меняют свою кривизну при возможном изгибе фольги при ее приготовлении.[9, С.65]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
7. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
8. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
9. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
10. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
11. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
12. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
13. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
14. Бартенев Г.М. Физика полимеров, 1990, 433 с.
15. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
16. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
17. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
18. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
19. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
20. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
21. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
22. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
23. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
24. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
25. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
26. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
27. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
28. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
29. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
30. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
31. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
32. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
33. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
34. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
35. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
36. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
37. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
38. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
39. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
40. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
41. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
42. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
43. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
44. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
45. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
46. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
47. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
48. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
49. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
50. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
51. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
52. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
53. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
54. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
55. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
56. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
57. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
58. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
59. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
60. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
61. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
62. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
63. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
64. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
65. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
66. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
67. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
68. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
69. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
70. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.
71. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную