На главную

Статья по теме: Рассеяния рентгеновских

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Картина рассеяния рентгеновских лучей под малыми углами, полученная для растянутого волокна или пленки, имеет вид штрихов, расположенных по меридиану перпендикулярно оси волокна. Они свидетельствуют о том, что происходит ориентация сосуществующих нескольких типов структур в процессе вытяжки пленок линейного полиэтилена. Из рассмотрения этих результатов можно сделать вывод о том, что структурные единицы — ламели, вызывающие первоначальную периодичность рефлексов, сохраняются до удлинения примерно на 250%.[11, С.180]

Петерлин [58] учитывал в своем предположении относительно происхождения субмикротрещин морфологическую структуру и анализ ранее упомянутых данных, полученных методом рассеяния рентгеновских лучей [17—21, 27]. Он предположил, что концы микрофибрилл, расположенные преимущественно на внешней поверхности фибрилл, втягиваются под действием напряжения (рис. 8.19). В ПА-6, обладающем низкой проч-[2, С.257]

С другой стороны, о существовании субмикротрещин в нагруженных полимерах известно уже давно, с тех пор как ленинградская школа [17, 18, 27, 28] применила для их изучения методы рассеяния рентгеновских лучей. Подобные суб-микротрещины были обнаружены в ПЭ, ПП, ПВХ, ПВБ, ПММА и ПА-6. Авторы данных работ отметили две существенные особенности образования субмикротрещин [28]. Во-первых, субмикроскопические трещины имеют конечные размеры, причем их поперечные размеры практически не зависят от продолжительности действия нагружения, величины напряжения и температуры (табл. 8.3). Во-вторых, поперечный размер субмикротрещин определяется структурой полимера. Для ориентированных кристаллических полимеров поперечный размер субмикротрещин совпадает с диаметром микрофибрилл; для неориентированных аморфных полимеров, имеющих глобулярную структуру, данный размер совпадает с диаметром глобул [28].[2, С.254]

Резиноподобные свойства термоэластопластов в невулканизованном состоянии определяются их двухфазной структурой, образуемой за счет ассоциации блоков одного и того же вида [2]. С помощью электронной микроскопии и малоуглового рассеяния рентгеновских лучей установлена высокая степень регулярности структуры этих полимеров [3]. При содержании диеновой части до 50% (масс.) эластичные диеновые блоки образуют непрерывную фазу, а стекловидные блоки винилароматических соединений диспергированы в ней в виде отдельных доменов размером порядка[1, С.283]

Различные экспериментальные наблюдения позволяют сделать вывод о том, что длительные периоды начала роста простой трещины и трещины серебра при низких значениях напряжения не просто вызваны уменьшением вероятности образования зародыша трещины в остальном не измененного материала. Природа изменений, происходящих на молекулярном уровне в процессе утомления образца, исследовалась разными авторами (например, [138, 143—147, 153]). Так, по затуханию колебаний торсионного маятника [138, 134—144] и методом ИК-поглощения [138] были исследованы молекулярная подвижность, взаимодействие молекул и их роль в поглощении энергии; путем измерений плотности и методом рассеяния рентгеновских лучей [144—146], а также путем применения образцов с различной молекулярной массой [153] были исследованы упаковка молекул и дефектность структуры, а с помощью кинетики рекомбинации захваченных свободных радикалов [146] было исследовано изменение морфологии материала. Результаты, полученные с помощью этих различных экспериментальных методов, характеризуют упорядочение молекул, но еще не позволяют получить количественные значения пределов усталости.[2, С.295]

Используя метод рассеяния рентгеновских лучей, Уэндорф [145] изучил флуктуации плотности, вызванные усталостью ПОМ («хостаформ» Т 1020). Он сообщает о некоторых интересных особенностях структуры таких дефектов:[2, С.301]

Определение методом рассеяния рентгеновских лучей числа микротрещин в волокнах ПА-6, подверженных воздействию напряжения о0 = 128 МПа на воздухе, позволило получить интересный результат [214], заключающийся в том, что скорость накопления микротрещин почти мгновенно возрастала (от 5-Ю16 до 110-1016 м~3 с~') при включении ультрафиолетового облучения. Эта скорость также резко уменьшалась до своего исходного значения при выключении ультрафиолетового облучения по истечении 104 с и при повторении подобной операции. Облучение ненапряженного образца не сопровождалось образованием микротрещин и не оказывало влияния на скорость их последующего образования. Было показано, что ультрафиолетовое облучение напряженного волокна ПА-6 и натурального шелка в атмосфере гелия увеличивало накопление свободных радикалов [213]. В данном случае скорость накопления радикалов при 200<ао<600 МПа убывала в зависимости от длительности срока облучения и достигала постоянной концентрации jV(R) через 5-Ю3 с. В ПА-6 при напряжении 600 МПа концентрация W(R) была порядка 1024 м~3; это значение близко к предельной концентрации, достигаемой в чисто механических испытаниях при разрыве цепей под действием напряжения.[2, С.321]

Результаты исследований методом рассеяния рентгеновских лучей и методом электронной микроскопии позволяют предположить, что пустоты, содержащиеся в трещине серебра, распределены в виде взаимосвязанных полостей сферической формы, типичные размеры которых 10—20 нм. На кривых напряжение—деформация, полученных для материалов с трещинами серебра, выявляется предел вынужденной эластичности, при превышении которого начинается течение материала, обратимое до значений деформации 40—50% при напряжении 41—55 МПа. При возврате к нулевому напряжению материал с трещиной серебра характеризуется обратимостью ползучести с замедляющейся скоростью[2, С.365]

Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрила-та при температуре ниже Тс. Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) .с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов.[3, С.27]

На рис. 9.19—9.21 воспроизводятся электронные микрофотографии реплик поверхностей разрушения ПА-6, полученного кристаллизацией под давлением [202]. На микрофотографиях видны стопы ламелл толщиной до 700 нм. На основании обширных исследований методами инфракрасной спектроскопии, широкоуглового рассеяния рентгеновских лучей и методами электронной микроскопии авторы данной работы пришли к выводу, что ламеллы состоят из вытянутых цепей. Согласно их предположению (рис. 9.22), трещина преимущественно может распространяться либо вдоль плоскостей (010) (в которых располагаются концы цепей, а также примеси, отторгнутые фронтом роста), либо вдоль плоскостей (002) —в слоях водородных связей ламелл. В обоих процессах не происходит разрыва связей основной цепи или водородных связей.[2, С.393]

Возникновение субмикроскопических разрывов сплошности наблюдалось методами рентгеновской дифракции в малых углах и при рассеянии света. С помощью обоих методов можно обнаружить неоднородности, в том числе субмикротрещины с размерами от 1 до 102—103 нм, определить их размеры, форму, ориентацию и концентрацию. В нагруженных полимерах резко возрастает интенсивность рассеяния рентгеновских лучей и света в результате появления мельчайших трещин, которые имеют дископодобную форму и расположены перпендикулярно оси нагружения. Их размеры— нанометры в продольном и десятки нанометров в поперечном направлении, а их концентрация в поперечном сечении достигает значений 1016—102! м~2. Такие субмикротрещины возникают только под нагрузкой. Снятие нагрузки не приводит к их «залечиванию».[3, С.325]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Малышев А.И. Анализ резин, 1977, 233 с.
7. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
10. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
13. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
14. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
15. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
16. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
17. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
18. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
19. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
20. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
21. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
22. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
23. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
24. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
25. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
26. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
27. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
28. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
29. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
30. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
31. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
32. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
33. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
34. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
35. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
36. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
37. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
38. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную