На главную

Статья по теме: Хаотически перепутанных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Ранее полимеры рассматривались как тела, Составленные из хаотически перепутанных цепных макромолекул. В дальнейшем эти представления были развиты в теорию «бахромчатых мицелл». Полимеры представляют собой систему, состоящую из кристаллических и аморфных областей, образующих одну сложную фазу.[1, С.18]

Длительное время считалось, что аморфные полимеры представляют собой конгломерат хаотически перепутанных молекул. В связи с этим возникло представление о так называемом «молекулярном войлоке», который, как предполагалось, соответствует структуре аморфного полимера. По образному выражению известного американ-[6, С.62]

Эдварде [4.13] в своей работе также подчеркивает, что классическая теория исходит из того, что цепи сетки не взаимодействуют между собой. Автор рассматривает другой крайний случай сеток по сравнению с моделью хаотически перепутанных, но не взаимодействующих цепей (классическая теория). Сильно перепутанная система цепей приводит к негауссовой статистике. Для энтропии[1, С.120]

Менее определенные формы надмолекулярной организации наблюдаются у полимеров с невысоким уровнем межмолекулярного взаимодействия, имеющих макромолекулы в конформащш статистического клубка. Длительное время считачи, что в конденсированном состоянии такие полимеры представляют собой конгломераты хаотически перепутанных клубков, образующих так называемый «молекулярный войлок». Однако такое представление не соответствует свойствам полимеров.[2, С.52]

Линейные размеры всех типов структурных микроблоков значительно меньше, чем контурная длина макромолекул, поэтому одна и та же макромолекула многократно проходит' через различные микроблоки. Между физическими узлами — микроблоками — имеются цепи сетки, которые являются частью макромолекулы. Если учесть, что микроблоки не являются стабильными образованиями и время их жизни уменьшается при повышении температуры, то за время наблюдения эти флуктуационные структуры могут многократно распадаться в одних местах и возникать в других, т. е. «размазываться» по объему полимера. Следовательно, модель упорядоченных областей (структурных микроблоков) является динамической, а для равновесных процессов она переходит в модель хаотически перепутанных цепей. Таким образом, модель сетки полимера, образованной физическими узлами в виде структурных микроблоков, не противоречит статистической теории высокой эластичности. В соответствии с этой моделью быстрая высокоэластическая деформация в эластомерах определяется подвижностью свободных сегментов и изменением конфигураций свободных цепей (между физическими узлами). Медленные физические релаксационные процессы и вязкое течение определяются временами жизни физических узлов сетки эластомера, кинетическая стабильность которых определяется методами релаксационной спектрометрии.[1, С.127]

Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрила-та при температуре ниже Тс. Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) .с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов.[1, С.27]

В настоящее время считают, что для структуры аморфных полимеров с гибкими макромолекулами, обладающими сегментальной подвижностью, характерно существование неупорядоченных областей из хаотически перепутанных макромолекул и упорядоченных микрообластей -[3, С.135]

На основании экспериментальных данных, полученных в последнее время различными авторами, было сделано предположение о том, что существующие представления о структуре аморфных полимеров в виде хаотически перепутанных, изогнутых цепей не соответствуют реальной структуре аморфных полимеров. Каргин, Китайгородский и Слонимский [1] считают, что молекулярное расположение цепей в аморфных полимерах может быть построено, как правило, либо из развернутых цепей, собранных в пачки, либо из свернутых на себя глобул. Особенности физических и механических свойств аморфных полимеров могут быть легко объяснены исходя из такой модели.[7, С.120]

Полосатые структуры. Уже первые данные, полученные методом электронной микроскопии, показали ошибочность широко распространенного до последних лет представления об аморфных полимерах как о системе хаотически перепутанных цепных молекул («аморфный войлок»). Такое представление не согласуется со многими экспериментальными данными Даже у низкомолеку-[4, С.441]

Однако последующие исследования показали, что эластомеры нельзя рассматривать как бесструктурный войлок перепутанных цепей [б; 46] . Прежде всего оказалось, что плотность упаковки макромолекул каучуко-подобных полимеров значительно выше, чем можно было ожидать для системы хаотически перепутанных цепей. Робертсон [47] рассчитал, что для последнего случая отношение плотности одного и того же полимера в аморфном и кристаллическом состояниях рам/ркр—[5, С.37]

Локальная анизотропия — анизотропия небольшого элемента полимерного тела. Элементы с линейными размерами порядка нескольких атомных всегда будут обладать анизотропией, т. к. в таком элементе будет находиться фактически один небольшой отрезок цепной полимерной молекулы. Значительно больший интерес представляет рассмотрение элементов надатомного или надмолекулярного масштаба.размером в единицы — десятки нм (десятки — сотни А). В отличие от существовавших ранее представлений о полимерных телах как состоящих в значительной мере из хаотически перепутанных цепных макромолекул, сейчас есть основания считать, что у полимеров в объеме надмолекулярного масштаба всегда имеется определенная упорядоченность во взаиморасположении макромолекул и, следовательно, такие элементы анизотропны. Это вполне очевидно для кристаллизующихся полимеров. В таких полимерах существуют кристаллиты — области трехмерной упорядоченности цепных макромолекул, а, как уже отмечалось, анизотропия кристалла вполне естественна. Образования более крупного масштаба в кристаллизующихся неориентированных полимерах — сферолиты и ламели (пластинчатые формы), где сами кристаллиты подстраиваются друг к другу определенным образом, обусловливают А. с. (радиально-симметричную у сферолитов и плоскостную у ламелей) у объемов еще большего размера (до долей мм).[10, С.70]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
3. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
4. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
5. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
6. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
7. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
8. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
9. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
10. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
11. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную