На главную

Статья по теме: Линейными размерами

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Локальная анизотропия — анизотропия небольшого элемента полимерного тела. Элементы с линейными размерами порядка нескольких атомных всегда будут обладать анизотропией, т. к. в таком элементе будет находиться фактически один небольшой отрезок цепной полимерной молекулы. Значительно больший интерес представляет рассмотрение элементов надатомного или надмолекулярного масштаба.размером в единицы — десятки нм (десятки — сотни А). В отличие от существовавших ранее представлений о полимерных телах как состоящих в значительной мере из хаотически перепутанных цепных макромолекул, сейчас есть основания считать, что у полимеров в объеме надмолекулярного масштаба всегда имеется определенная упорядоченность во взаиморасположении макромолекул и, следовательно, такие элементы анизотропны. Это вполне очевидно для кристаллизующихся полимеров. В таких полимерах существуют кристаллиты — области трехмерной упорядоченности цепных макромолекул, а, как уже отмечалось, анизотропия кристалла вполне естественна. Образования более крупного масштаба в кристаллизующихся неориентированных полимерах — сферолиты и ламели (пластинчатые формы), где сами кристаллиты подстраиваются друг к другу определенным образом, обусловливают А. с. (радиально-симметричную у сферолитов и плоскостную у ламелей) у объемов еще большего размера (до долей мм).[15, С.70]

Локальная а и и з о т р о п и я — анизотропия небольшого элемента полимерного тела. Элементы с линейными размерами порядка нескольких атомных всегда будут обладать анизотропией, т. к. в таком элементе будет находиться фактически один небольшой отрезок цепной полимерной молекулы. Значительно больший интерес представляет рассмотрение элементов надатомного или надмолекулярного масштаба .размером в единицы — десятки нм (десятки — сотни А). В отличие от существовавших ранее представлений о полимерных телах как состоящих в значительной мере из хаотически перепутанных цепных макромолекул, сейчас есть основания считать, что у полимеров в объеме надмолекулярного масштаба всегда имеется определенная упорядоченность во взаиморасположении макромолекул и, следовательно, такие элементы анизотропны. Это вполне очевидно для кристаллизующихся полимеров. В таких полимерах существуют кристаллиты — области трехмерной упорядоченности ценных макромолекул, в, как уже отмечалось, анизотропия кристалла вполне естественна. Образования более крупного масштаба в кристаллизующихся неориентированных полимерах — сферолиты и ламели (пластинчатые формы), где сами кристаллиты подстраиваются друг к другу определенным образом, обусловливают А. с. (радиально-снмметричпую у сферолитов и плоскостную у ламелей) у объемов еще большего размера (до долей мм).[14, С.73]

Светорассеяние в твердых полимерах (кленках, волокнах, блоках). В этом случае С. происходит на структурных неоднородностях с линейными размерами порядка длины световой волны. В кристаллич. полимерах это области раз-Рис. 2. Схема измерений светорассеяния в пленках полимеров фотографии, методом. П — поляризатср, А — анализатор, О — образец, Ф — фотопластинка, 6 ид — углы рассеяния.[13, С.194]

Светорассеяние в твердых полимерах (пленках, волокнах, блоках). В этом случае С. происходит на структурных неоднородностях с линейными размерами порядка длины световой волны. В кристаллич. полимерах это области раз-Рис. 2. Схема измерений светорассеяния в пленках полимеров фотографич. методом. П — поляризатор, А — анализатор, О — образец, Ф — фотопластинка, Виц — углы рассеяния.[17, С.194]

Идея второго пути [11.15] заключается в том, чтобы использовать формулу (11.19), предложенную для расчета концентрации напряжения в вершине микротрещины в упругой среде для материала, находящегося в квазихрупком состоянии: под К в этом случае понимают размеры Х*-области микропластической деформации впереди трещины. Размеры этой микрообласти часто связывают с линейными размерами элементов микроструктуры (у металлов —[1, С.320]

Анализ результатов исследования структуры некристаллических линейных полимеров различными структурными методами приводит к выводу, что можно считать доказанным существование упорядоченных микрообластей с примерно параллельной укладкой сегментов макромолекул с плотностью на 1—2% большей, чем остальная неупорядоченная часть полимеров (мицеллярные микроблоки). Могут возникать упорядоченные микрообласти и при складывании цепей, по аналогии с полимерными кристаллитами гибкоцепных полимеров. Эти микрообласти (складчатые структурные микроблО-ки) играют роль предзародышей кристаллизации в полимерах. Третий тип упорядоченных микрообластей — глобулярные микроблоки с неупорядоченной, но более плотной, чем остальная свободная часть полимера, укладкой сегментов. В настоящее время имеются убедительные доказательства существования упорядоченных микрообластей — структурных микроблоков (ассоциатое, или кластеров). Современная электронная микроскопия эластомеров подтверждает существование макрообластей с повышенной на 1—2% плотностью и с линейными размерами 10—30 нм, что соответствует размерам частиц в коллоидных системах. При этом доля объема, занимаемая микрообластями повышенной плотности, составляет для эластомеров примерно 20%. Это значит, что 80% объема занимают свободные цепи и сегменты, ответственные за высокую эластичность этих материалов. Таким образом, можно считать, что эластомеры помимо малых структурных элементов — звеньев, боковых привесков и сегментов макромолекул — состоят из более сложных структурных элементов — структурных микроблоков трех типов.[1, С.126]

Длина клиновых ремней может находиться в пределах от 400 до 18 ООП мм. Поэтому для унификации применяемых н машиностроении ремней градация их длин проведена в соответствии с нормальными линейными размерами, определяемыми ГОСТ 8032 —84 на ряды предпочтительных чисел.[2, С.210]

Основные результаты -подробно изложены в монографии Таму-жа и Куксенко [5.54]. Показано, что в кристаллических ориентированных полимерах под нагрузкой образуются преимущественно субмикротрещины с линейными размерами /о, равными 10—20 им. Очагами появления субмикротрещин являются аморфные участки микрофибрилл, т. е. слабые места структуры волокон. С течением времени происходит увеличение числа субмикротрещин до определенной максимальной величины (1013—1016 см~3), близкой к числу аморфных участков в 1 сма полимера (1017 см~3). Стабилизация числа возникающих субмикротрещин объясняется тем, что каждая субмикротрсщина блокируется прочными кристаллическими участками соседних микрофибрилл. Образование субмикротрещин происходит при нагрузках, существенно меньших разрывной, и само по себе непосредственно не приводит к разрушению полимера. Только образование разрушающей (магистральной) микротрещины и ее рост приводит к разрушению.[7, С.139]

Таким образом, для нахождения молекулярного веса полимера, размеры молекул которого соизмеримы с длиной __волны, необходимо найти фактор внутренней интерференции Ф(т>, /г2Д2). В то же время, поскольку асимметрия рассеяния связана с линейными размерами частиц, зная величину Ф(д, /г2Д2), можно рассчитать размеры молекулярного клубка (если форма его предполагается).[6, С.86]

Существуют достаточно убедительные указания на то, что на всех доступных изучению уровнях надмолекулярной морфологии развиваются вполне определенные и хорошо различимые, хотя и не до конца расшифрованные, организованные структуры. Малоугловое рассеяние рентгеновских лучей выявляет дискретные структуры с линейными размерами до сотен ангстрем [26, 27]. Типичная картина рассеяния рентгеновских лучей под малыми углами от высокоориентированного волокна из линейного полиэтилена показана на рис. 7. В этом образце разрешаются несколько диффракционных по- , ' ' - '""• „; ;,,.,„• рядков, соответствующих большому[10, С.27]

Несмотря на то что в электронной литографии для достижения субмикронного разрешения используются апертуры меньшие, чем в оптической литографии, и достигается большая глубина резкости, в результате рассеяния электронов наблюдается расширение линий. Обычно используемая фокусировка пучка электронов до сечения радиусом 50 нм может привести к экспонированию участков с линейными размерами порядка нескольких микрометров (эффект близости). Кроме того, имеет место и отрицательное влияние накопления заряда диэлектриком (например, SiO2). Поскольку рассеяние и отражение электронов возрастает с ростом заряда ядра атомов элементов, входящих в состав подложки, влияние на эти величины Si и Se более ярко выражено, чем влияние органических материалов, состоящих только из углерода, водорода и кислорода, что и достигается в планаризационном слое.[4, С.270]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
5. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
6. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
7. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
8. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
9. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
10. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
11. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
12. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
16. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную