На главную

Статья по теме: Кристаллических образований

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Надмолекулярная структура. Увеличение размеров кристаллических образований, в частности сферолитов, при неизменной общей степени кристалличности приводит к снижению деформируемости полимера (снижению разрывных деформаций) и к снижению прочности. Увеличение степени кристалличности приводит к росту прочностных показателей. Примером может служить полиэтилен высокой плотности, более прочный, чем полиэтилен низкой плотности.[5, С.207]

Когда макромолекулы строго монодисперсны, возможно построение правильных кристаллических образований из глобул (например, вирус табачной мозаики). Отсутствие сильного межмолекулярного взаимодействия между отдельными глобулами и сильное внутримолекулярное взаимодействие должны привести к утере многих специфических свойств полимеров (большой деформируемости,[4, С.21]

Так как растяжение натурального каучука приводит к ориентации молекулярных звеньев и появлению ориентированных кристаллических образований, то каучук при растяжении становится анизотропным и приобретает двойное лучепреломление.[6, С.88]

Таким образом, в кристаллических полимерах механизм перехода исходного образца в шейку состоит в следующем: 1) полный распад кристаллических образований с последующей ориентацией сегментов, ранее входивших в состав неориентированного кристаллита, а теперь, после ориентации, образующих ориентированный кристаллит. Этот процесс называется рекристаллизацией; 2) частичное разрушение кристаллитов, перемещение кристаллических «обломков» в направлении деформации, ориентация сегментов, связывающих «обломки» между собой; 3) пластическая деформация кристаллитов по плоскостям скольжения и дислокациям 6e.t полного их разрушения; 4) деформация сферолитов в эллиптические образования за счет аморфной части (дефектов структуры) в них. Вклад каждой составляющей в общий механизм деформации точно не известен. Он определяется и типом полимера, и условиями деформации. Заметим только, что при полном развитии процесса образования шейки полимер в шейке высоко ориентирован и фибриллизован, поэтому на поздних стадиях образования шейки значительная часть кристаллических структур, повернутых или перемещенных без разрушения в направлении деформации, в конце концов также разрушается и сегменты ориентируются преимущественно в направлении деформации.[5, С.187]

Свойства полимера заметно изменяются с переходом его из аморфного в кристаллическое состояние. С увеличением степени кристалличности возрастают плотность, твердость и жесткость полимера, заметно увеличивается механическая прочность, но одновременно уменьшается упругость и эластичность. Присутствие кристаллических образований вызывает снижение хладоте-[2, С.52]

Наряду с существованием некристаллнзующнхся кластеров предполагают существование так называемых кристаллических. Если полимер имеет молекулярное строение, обеспечивающее при определенных условиях трехмерную упорядоченную структуру в кластере, то такие кластеры способны кристаллизоваться и иметь кристаллическую структуру Если размер кристаллических образований меньше так называемых «критических» размеров зародышей кристаллизации, то кристаллизация на этих кластерах развиваться не будет и полимер в целом останется аморфным. При достаточных размерах кристаллического кластера вероятно образование тех или иных кристаллических форм надмолекулярных структур.[10, С.54]

В ПЭВД, как и в ПЭНД, кристаллиты образуют более крупные упорядоченные образования — сферолиты. Если размеры кристаллитов в ПЭВД 5—20 нм, то размеры сферолитов на несколько порядков больше и составляют 103 —104 нм и даже более. Микроскопическое исследование в поляризованном свете тонких срезов и пленок ПЭВД обнаружило картину, характерную для сферолитов, — систему кристаллических образований, исходящих из одной точки и имеющих одну и ту же кристаллическую ось, направленную радиально из общего центра.'При наблюдении в микроскопе со скрещенными поляризаторами (николями) . на фоне свечения видны темные „мальтийские" кресты, характерные для веществ, имеющих сферолиты. Наблюдаемое в микроскопе свечение образца при скрещенных николях свидетельствует о существовании двойного лучепреломления, связанного с определенной ориентацией макромолекул. Различие в значениях показателя преломления для сферолитов в тангенциальном и радиальном направлении (оно больше в тангенциальном направлении) и отрицательный знак двойного лучепреломления показывают, что макромолекулы располагаются в тангенциальном направлении. Это соответствует такой ориентации кристаллитов, при которой ось с, совпадающая с направлением оси макромолекул, располагается в тангенциальной направлении. При изучении методом микродифракции рентгеновских лучей [37, с. 165] было подтверждено тангенциальное направление осей макромолекул в сферолите, а также показано, что ось Ъ направлена вдоль радиуса сферолита.[9, С.145]

Теплоемкость ср частично-кристаллических полимеров вплоть до их Гпл изменяется мало. Небольшой изгиб температурной зависимости Ср ПП вблизи 283 К связан с переходом его аморфной части из стеклообразного в высокоэластическое состояние. Выше температуры 385 К рост теплоемкости частично-кристаллических полимеров начинает постепенно ускоряться, что связано с началом плавления кристаллических образований, приводящим к увеличению подвижности на границах аморфных и кристаллических областей. Большее значение удельной теплоемкости ПП по сравнению с ПЭНД связано с дополнительным вкладом, обусловленным вращением метальной группы. Повышенному значению теплоемкости ПП в широком интервале температур способствуют также заторможенное вращение групп С—СН3, два дополнительных скелетных деформационных колебания и три дополнительных углерод-водородных деформационных колебания.[4, С.270]

Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях: в виде определенного рода упорядоченностей и морфологически обусловленных неоднородносгей в аморфном полимере; в виде кристаллических образований; и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пически.х размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации.[1, С.42]

Подведем общий итог. Полимеры с регулярными макромолекулами способны кристаллизоваться, причем в кинетике кристаллизации и в видах кристаллических структур проявляется весь комплекс релаксационных свойств полимера. Характерной чертой кристаллических структур является участие в них макромолекул, сложенных сами на себя так, что сегменты оказываются ориентированными перпендикулярно плоскости ламелей — элементарных кристаллических образований. Кривая напряжение —деформация, за-[5, С.193]

Например, прибор типа ТА 4000/ ТМА 40, в котором предусмотрено испытание образцов на ударное сжатие, инденторное внедрение, трехточечный изгиб и динамическое растяжение, обеспечивает определение коэффициента линейного расширения полимеров в температурном диапазоне от -100 до 300 °С, твердости образцов при нагрузке 2Н, ползучести материалов при длительной экспозиции, поведения полимеров при знакопеременной нагрузке; контролирует температурную зависимость деформации образцов, что позволяет точно установить пороговую температуру начала разориентации кристаллических образований в полимерах [8].[12, С.373]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
6. Белозеров Н.В. Технология резины, 1967, 660 с.
7. Амброж И.N. Полипропилен, 1967, 317 с.
8. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
9. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
10. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
11. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
12. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
13. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
14. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
15. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
16. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
17. Пашин Ю.А. Фторопласты, 1978, 233 с.
18. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
19. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
20. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
21. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
22. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
23. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
24. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
25. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
26. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
27. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
28. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
29. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
30. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
31. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
32. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
33. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную