На главную

Статья по теме: Ориентацией макромолекул

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Другое осложнение состоит в том, что внешнее поле может вызвать наряду с ориентацией макромолекул или их частей еще более сложные процессы, такие, как кристаллизация. Поэтому, чтобы разобраться в явлении ориентации, необходимо вначале выяснить, что именно ориентируется — звенья, молекулы, кристаллы или более сложные частицы. Кроме того, следует отметить, что очень важно изыскать надежные способы для определения ориентации и методы, позволяющие отличить ориентированные полимеры от истинно кристаллических, так как и кристаллические и ориентированные тела анизотропны, а скорость дезориентации у полимеров иногда ничтожно мала.[10, С.460]

Механическая прочность полимеров аморфной структуры н одном направлении может быть значительно увеличена ориентацией макромолекул. Для этого полимер нагревают выше температуры стеклования и медленно растягивают. Под влиянием растягивающего усилия способность отдельных макромолекул принимать различные формы (конформационный состав) уменьшается, и, постепенно выпрямляясь, они располагаются вдоль оси ориентации и сближаются друг с другом, создавая более уплотненную структуру. Для повышения прочности в двух взаимно-перпендикулярных направлениях полимер растягивают по двум направлениям.[1, С.48]

Повышение прочности (~в 10 раз) при переходе от сферо-литной к фибриллярной структуре связано со значительной ориентацией макромолекул в фибриллярных кристаллах. Еще в большей мере проявляется роль ориентации при разрушении стеклообразных полимеров (нехрупкие стекла) в области температур ТхР<Т^Тс, где прочностные свойства определяются способностью материала образовывать «шейку». В этом случае[6, С.345]

Книга заканчивается рассмотрением ряда способов формования, применяемых в технологии переработки полимеров. И опять каждый из этих методов формования рассматривается независимо от какого-либо конкретного метода переработки. В дополнение к логической классификации методов формования мы рассматриваем влияние переработки на надмолекулярную структуру, обусловленное механической ориентацией макромолекул при переработке, зафиксированной вследствие быстрого охлаждения.[2, С.11]

Другой областью применения рентгеновских методов является изучение ориентации и степени упорядоченности макромолекул. Известно, что при различных видах механической обработки^ например вытяжке, прессовании, происходит ориентация макро.моле-кул, а в некоторых случаях и кристаллизация полимера. Поэтому большинство готовых изделий (волокна и ^лепки) обладают текстурой, т. е. определенной ориентацией макромолекул и кристаллитов.[4, С.107]

В ориентированных аморфно-кристаллических полимерах роль слабых мест играют аморфные межкристаллитные прослойки. Цепи в таких прослойках, вследствие того что их меньше в поперечном сечении, чем в кристаллитах, перегружены по сравнению с цепями в кристаллитах. Кроме того, в самих аморфных прослойках цепи имеют разные длины и различную ориентацию, поэтому напряжение на них распределяется неравномерно: больше всего перегружены цепи, имеющие наименьшую длину, равную ширине аморфной прослойки. Поэтому естественно предположить, что именно аморфные области ответственны за низкую прочность полимеров. Это подтверждается работами Журкова с сотрудниками, установившими прямую корреляцию между прочностью капроновых волокон и ориентацией макромолекул в аморфных областях, определяемой методом инфракрасной поляризационной[3, С.202]

В ПЭВД, как и в ПЭНД, кристаллиты образуют более крупные упорядоченные образования — сферолиты. Если размеры кристаллитов в ПЭВД 5—20 нм, то размеры сферолитов на несколько порядков больше и составляют 103 —104 нм и даже более. Микроскопическое исследование в поляризованном свете тонких срезов и пленок ПЭВД обнаружило картину, характерную для сферолитов, — систему кристаллических образований, исходящих из одной точки и имеющих одну и ту же кристаллическую ось, направленную радиально из общего центра.'При наблюдении в микроскопе со скрещенными поляризаторами (николями) . на фоне свечения видны темные „мальтийские" кресты, характерные для веществ, имеющих сферолиты. Наблюдаемое в микроскопе свечение образца при скрещенных николях свидетельствует о существовании двойного лучепреломления, связанного с определенной ориентацией макромолекул. Различие в значениях показателя преломления для сферолитов в тангенциальном и радиальном направлении (оно больше в тангенциальном направлении) и отрицательный знак двойного лучепреломления показывают, что макромолекулы располагаются в тангенциальном направлении. Это соответствует такой ориентации кристаллитов, при которой ось с, совпадающая с направлением оси макромолекул, располагается в тангенциальной направлении. При изучении методом микродифракции рентгеновских лучей [37, с. 165] было подтверждено тангенциальное направление осей макромолекул в сферолите, а также показано, что ось Ъ направлена вдоль радиуса сферолита.[5, С.145]

С наблюдаемым ростом продольной вязкости^ связанным с ориентацией макромолекул, коррелирует увеличение модуля высоко-эластичности Е (рис. 6.12), поскольку ориентация способствует росту жесткости материала. При этом в области низких скоростей деформации выполняется соотношение Е = 3G, следующее из линейной теории вязкоупругости.[11, С.423]

На Ус аморфно-кристаллич. полимеров решающим образом влияют особенности их структуры. Если кристаллизация сопровождается ориентацией макромолекул в аморфных участках, Ус повышается. Разрыхление структуры вследствие образования микротрещин или пор приводит к понижению Ус. При кристаллизации и при хранении аморфные участки обогащаются разветвленными макромолекулами и низкомолекулярными фракциями вследствие их постепенного вытеснения из кристаллитов, что может как повышать, так и понижать Ус. Наличие в аморфных участках проходных цепей, количество к-рых зависит от условий кристаллизации, затрудняет молекулярную релаксацию и приводит к увеличению Ус.[13, С.248]

На Тс аморфно-кристаллич. полимеров решающим образом влияют особенности их структуры. Если кристаллизация сопровождается ориентацией макромолекул в аморфных участках, Тс повышается. Разрыхление структуры вследствие образования микротрещин или пор приводит к понижению Тс. При кристаллизации и при хранении аморфные участки обогащаются разветвленными макромолекулами и низкомолекулярными фракциями вследствие их постепенного вытеснения из кристаллитов, что может как повышать, так и понижать Тс. Наличие в аморфных участках проходных цепей, количество к-рых зависит от условий кристаллизации, затрудняет молекулярную релаксацию и приводит к увеличению Тс.[17, С.248]

В результате механического воздействия на полимеры получаются механоэлсктреты Например, при сжатии полярных по лнмеров наряду с ориентацией макромолекул происходит их поляризация в направлении, перпендикулярном плоскости ориен тацин[6, С.389]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Виноградов Г.В. Реология полимеров, 1977, 440 с.
12. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
16. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную