На главную

Статья по теме: Упорядоченности макромолекул

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Другой областью применения рентгеновских методов является изучение ориентации и степени упорядоченности макромолекул. Известно, что при различных видах механической обработки^ например вытяжке, прессовании, происходит ориентация макро.моле-кул, а в некоторых случаях и кристаллизация полимера. Поэтому большинство готовых изделий (волокна и ^лепки) обладают текстурой, т. е. определенной ориентацией макромолекул и кристаллитов.[4, С.107]

Другой областью применения рентгеновских методов является изучение ориентации и степени упорядоченности макромолекул. Известно, что при различных видах механической обработки, например вытяжке, прессовании, происходит ориентация макромолекул, а в некоторых случаях и кристаллизация полимера. Поэтому большинство готовых изделий (волокна и пленки) обладают текстурой, т. е. опраделенной ориентацией макромолекул и кристаллитов.[6, С.107]

В главах IV, V и VI рассмотрены вопросы, связанные с гибкостью полимерных цепей, фазовыми состояниями полимеров, особенностями упорядоченности макромолекул, а также изложены методы исследования структуры полимеров. В главах VII, VIII, IX, X освещены механические и реологические свойства полимеров,[4, С.10]

В главах IV, V и VI рассмотрены вопросы, связанные с гибкостью полимерных цепей, фазовыми состояниями полимеров, особенностями упорядоченности макромолекул, а также изложены методы исследования структуры полимеров. В главах VII, VIII, IX, X освещены механические и реологические свойства полимеров,[6, С.10]

Кристаллических и аморфных прослоек (см. рис. VI. 11) прочность определяется, в частности, числом цепей в сечении фибриллы [16, с. 147]. В кристаллите число цепей в поперечном сечении является максимально возможным для данного полимера и при достаточно строгой упорядоченности макромолекул можно считать, что они нагружены равномерно. В аморфных участках такая упорядоченность отсутствует, а участки цепей в них имеют разные контурные длины и различную ориентацию. Однако если бы все цепи переходили из одного кристаллита в другой, то в сечении аморфной[1, С.200]

При гидролизе целлюлозы происходит разрыв глюкозидной связи между элементарными звеньями в макромолекуле, причем легче этот процесс протекает в присутствии кислот (H2SOj, HC1, НзРОч). В принципе реакцию можно довести до образования глюкозы, но обычно образуются промежуточные сахариды, построенные по типу целлюлозы, или более высокомолекулярные продукты. Процесс гидролиза в значительной степени зависит ог степени упорядоченности макромолекул целлюлозы. Чем меньше эта упорядоченность, тем более доступны участки макромолекул в неупорядоченных областях атаке гидролизующих агентов. По типу кислотного гидролиза целлюлозы протекает микробиологическая деструкция ее под действием природных ферментов. Деструкция целлюлозы под действием ще-[2, С.255]

В последнее время эта точка зрения была опровергнута открытием единичных микрокристаллов высокомолекулярных соединений, и сейчас можно утверждать, что любой полимер, способный к кристаллизации, может быть получен в виде единичных кристаллов45. Было найдено, что кристаллизации полимеров предшествует упорядочение аморфных полимеров, т. е. возникновение аморфных надмолекулярных структур. Достаточно высокая в ряде случаев скорость кристаллизации полимеров подтверждает наличие предварительной упорядоченности макромолекул полимера в аморфном состоянии. Надмолекулярная структура аморфных каучуков характерна наличием пачек цепей, три слиянии которых образуются полосатые структуры каучуков. Кристаллизация происходит сначала в пределах пачек, а затем идет постепенно дальнейшее упорядочение кристаллизованных пачек.[3, С.85]

На рис. IV. 19 приведены типичные термомеханические кривые для атактического полистирола, содержащего 5% пластификатора и различные количества стеклянного волокна. На рис. IV. 20 приведены термомеханические кривые полистирола, амор-физованного путем быстрого охлаждения изотактического, а на рис. IV. 21—типичные кривые для кристаллического полимера, содержащего 5% пластификатора и различные количества наполнителя. Экспериментальные данные показывают, что введение наполнителя в кристаллический полимер очень незначительно влияет на изменение его Гпл. Введение пластификатора в наполненный изотак-тический аморфизованный и кристаллический полимеры приводит к появлению сложной зависимости от содержания пластификатора. Результаты исследования термомеханических свойств указывают на существенное различие в поведении наполненных непластифицированных и пластифицированных полимеров одной и той же химической природы, но находящихся в различном фазовом состоянии. В случае аморфного полимера, как было предположено нами ранее, взаимодействие макромолекул и надмолекулярных структур с поверхностью наполнителя приводит к образованию дополнительной структурной сетки, что и определяет заметное изменение термомеханических свойств. В изотактическом полистироле, где степень упорядоченности макромолекул велика, их регулярное расположение и сильное межмолекулярное взаимодействие друг с другом в кристаллической решетке препятствуют образованию каких-либо прочных связей с поверхностью наполнителя. Промежуточное положение занимает аморфизованный изотактический полистирол.[8, С.175]

Рис. 122. Поперечное сечение пачки с различными степенями упорядоченности макромолекул и их звеньев:[7, С.438]

Процесс гидролиза в значительной степени зависит от степени упорядоченности макромолекул целлюлозы. Чем меньше эта упорядоченность, тем более доступны участки макромолекул в неупорядоченных областях атаке гидролизующих агентов. По типу кислотного гидролиза целлюлозы протекает микробиологическая деструкция ее под действием природных ферментов. Деструкция целлюлозы под действием щелочей протекает при повышенных температурах, и реакция идет уже по типу деполимеризации.[11, С.200]

Процесс гидролиза в значительной степени зависит от степени упорядоченности макромолекул целлюлозы. Чем меньше эта упорядоченность, тем более доступны участки макромолекул в неупорядоченных областях атаке гидролизующих агентов. По типу кислотного гидролиза целлюлозы протекает микробиологическая деструкция ее под действием природных ферментов. Деструкция целлюлозы под действием щелочей протекает при повышенных температурах, и реакция идет уже по типу деполимеризации.[15, С.200]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
8. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
9. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
10. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
11. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
12. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
15. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
16. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
17. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
18. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
19. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
21. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
22. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную